分析 由BE為角平分線,且DE垂直于BA,EC垂直于BC,利用角平分線性質得到DE=CE,則AE+DE+AD=(AE+CE)+AD=AC+AD,故可得出結論.
解答 解:∵∠ACB=90°,
∴EC⊥BC,
又∵BE平分∠ABC,DE⊥AB,
∴DE=CE,∠DBE=∠CBE,
∵∠A=30°
∴AB=2BC,∠DBE=30°,
又∵AC=4$\sqrt{3}$cm,
∴BC=4cm,AB=8cm,
∴AD=BD=4cm,
∴AE+DE=AE+CE=AC=4$\sqrt{3}$cm.
∴AE+DE+AD=(AE+CE)+AD=AC+AD=(4$\sqrt{3}$+4)cm.
故答案為4$\sqrt{3}$+4.
點評 本題考查了角平分線的性質,熟知角的平分線上的點到角的兩邊的距離相等是解答此題的關鍵.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com