【題目】如圖,在Rt△ABC中,∠ABC=90°,∠ACB=30°.將△ABC繞點A按逆時針方向旋轉15°后得到△AB1C1 , B1C1交AC于點D,如果AD=2 ,則△ABC的周長等于 .
【答案】6+2
【解析】解:在Rt△ABC中,∠ABC=90°,∠ACB=30°, 則∠BAC=60°,
將△ABC繞點A按逆時針方向旋轉15°后,∠B1AD=45°,
而∠AB1D=90°,故△AB1D是等腰直角三角形,
如果AD=2 ,則根據(jù)勾股定理得,
AB1=2那么AB=AB1=2,
AC=2AB=4,
BC=2 ,
△ABC的周長為:AB+BC+AC=2+4+2 =6+2 .
故本題答案為:6+2 .
【考點精析】通過靈活運用解直角三角形和旋轉的性質,掌握解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法);①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】某市是蜜桔之鄉(xiāng),今年桔子大豐收,某合作社要把240噸桔子運往某市的A、B兩地,用大、小兩種貨車共20輛,恰好能一次性運完這批桔子,已知這兩種貨車的載重量分別為15噸/輛和10噸/輛.
(1)這兩種貨車各有多少輛?
(2)運往A地的運費為:大車630元/輛,小車420元/輛;運往B地的運費為:大車750元/輛,小車550元/輛.若把20輛貨車中的10輛安排前往A地,其余貨車前往B地,其中調往A地的大車有a輛,求總運費.(用含a的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形卡片A類、B類和長方形卡片C類各若干張,如果要拼一個長為(a+3b)、寬為(2a+b)的大長方形;
(1)需要A類、B類和C類卡片的張數(shù)分別為( );
A.2,3,7 B.3,7,2
C.2,5,3 D.2,5,7
(2)畫出長方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+3與x軸交于A、B兩點,與y軸交于C點,對稱軸與拋物線相交于點M,與x軸相交于點N.點P是線段MN上的一動點,過點P作PE⊥CP交x軸于點E.
(1)直接寫出拋物線的頂點M的坐標是 .
(2)當點E與點O(原點)重合時,求點P的坐標.
(3)點P從M運動到N的過程中,求動點E的運動的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是面積為 的等邊三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC與DE相交于點F,則△AEF的面積等于(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:在解方程組時,我們可以先①+②,得再②-①,得最后重新組成方程組,這種解二元一次方程組的解法我們稱為二元一次方程組的輪換對稱解法.
(1)用輪換對稱解法解方程組,得_____________________________;
(2)如圖,小強和小紅一起搭積木,小強所搭的“小塔”高度為32cm,小紅所搭的“小樹”高度為3lcm,設每塊A型積木的高為每塊B型積木的高為求與的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,所有正方形的中心均在坐標原點,且各邊與x軸或y軸平行,從內到外,它們的邊長依此為2,4,6,8,...,頂點依此用A1,A2,A3,A4......表示,則頂點A55的坐標是___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個全等的三角尺重疊放在△ACB的位置,將其中一個三角尺繞著點C按逆時針方向旋轉至△DCE的位置,使點A恰好落在邊DE上,AB與CE相交于點F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,則CF=cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是線段AB上一點,C、D兩點分別從P、B出發(fā)以1cm/s、2 cm/s的速度沿直線AB向左運動(C在線段AP上,D在線段BP上)
(1)若C、D運動到任一時刻時,總有PD=2AC,請說明P點在線段AB上的位置:
(2)在(1)的條件下,Q是直線AB上一點,且AQ-BQ=PQ,求的值。
(3)在(1)的條件下,若C、D運動5秒后,恰好有,此時C點停止運動,D點繼續(xù)運動(D點在線段PB上),M、N分別是CD、PD的中點,下列結論:①PM-PN的值不變;②的值不變,可以說明,只有一個結論是正確的,請你找出正確的結論并求值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com