如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A的坐標(biāo)為(m,m),點(diǎn)B的坐標(biāo)為(n,-n),且經(jīng)過原點(diǎn)O,連接OA、OB、AB,線段AB交y軸于點(diǎn)C.已知實(shí)數(shù)m,n(m<n)分別是方程x2-2x-3=0的兩根.

(1)求m,n的值.
(2)求拋物線的解析式.
(3)若點(diǎn)P為線段OB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、B重合),直線PC與拋物線交于D、E兩點(diǎn)(點(diǎn)D在y軸右側(cè)),連接OD,BD.當(dāng)△OPC為等腰三角形時(shí),求點(diǎn)P的坐標(biāo).

(1)m=-1,n=3;(2)y=-x2+x;(3)P1,-),P2,-),P3,-).

解析試題分析:(1)解方程即可得出m,n的值.
(2)將A,B兩點(diǎn)的坐標(biāo)代入,進(jìn)而利用待定系數(shù)法求出二次函數(shù)解析式即可;
(3)首先求出AB的直線解析式,以及BO解析式,再利用等腰三角形的性質(zhì)得出當(dāng)OC=OP時(shí),當(dāng)OP=PC時(shí),點(diǎn)P在線段OC的中垂線上,當(dāng)OC=PC時(shí)分別求出x的值即可.
試題解析:(1)解方程x2-2x-3=0,
得 x1=3,x2=-1.
∵m<n,
∴m=-1,n=3.
(2)∵m=-1,n=3,
∴A(-1,-1),B(3,-3).
∵拋物線過原點(diǎn),設(shè)拋物線的解析式為y=ax2+bx(a≠0).
,解得:
∴拋物線的解析式為y=-x2+x.
(3)設(shè)直線AB的解析式為y=kx+b.
,解得:,
∴直線AB的解析式為y=-x-
∴C點(diǎn)坐標(biāo)為(0,-).
∵直線OB過點(diǎn)O(0,0),B(3,-3),
∴直線OB的解析式為y=-x.
∵△OPC為等腰三角形,
∴OC=OP或OP=PC或OC=PC.
設(shè)P(x,-x),
(i)當(dāng)OC=OP時(shí),x2+(-x)2=
解得x1=,x2=-(舍去).
∴P1,-).
(ii)當(dāng)OP=PC時(shí),點(diǎn)P在線段OC的中垂線上,
∴P2,-).
(iii)當(dāng)OC=PC時(shí),由x2+(-x+2=,
解得x1=,x2=0(舍去).
∴P3,-).
∴P點(diǎn)坐標(biāo)為P1,-),P2,-),P3,-).
考點(diǎn): 二次函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某商店將進(jìn)價(jià)為每件80元的某種商品按每件100元出售,每天可售出100件.經(jīng)過市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品每件每降低1元,其銷售量就可增加10件.
(1)設(shè)每件商品降低售價(jià)元,則降價(jià)后每件利潤(rùn)        元,每天可售出        件(用含的代數(shù)式表示);
(2)如果商店為了每天獲得利潤(rùn)2160元,那么每件商品應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

拋物線過點(diǎn)(2,-2)和(-1,10),與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).
(1)求拋物線的解析式.
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)y=ax2+bx-3的圖象經(jīng)過點(diǎn)A(2,-3),B(-1,0). 求二次函數(shù)的解析式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,二次函數(shù)y=-x2+(m-1)x+4m的圖象與x軸負(fù)半軸交于點(diǎn)A,與y軸交于點(diǎn)B(0,4),已知點(diǎn)E(0,1).

(1)求m的值及點(diǎn)A的坐標(biāo);
(2)如圖,將△AEO沿x軸向右平移得到△A′E′O′,連結(jié)A′B、BE′.
①當(dāng)點(diǎn)E′落在該二次函數(shù)的圖象上時(shí),求AA′的長(zhǎng);
②設(shè)AA′=n,其中0<n<2,試用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值時(shí)點(diǎn)E′的坐標(biāo);
③當(dāng)A′B+BE′取得最小值時(shí),求點(diǎn)E′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線與x軸交于點(diǎn)A(—2,0),交y軸于點(diǎn)B(0,).直過點(diǎn)A與y軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)是D.

(1)求拋物線與直線的解析式;
(2)設(shè)點(diǎn)P是直線AD下方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、D重合),過點(diǎn)P作 y軸的平行線,交直線AD于點(diǎn)M,作DE⊥y軸于點(diǎn)E.探究:是否存在這樣的點(diǎn)P,使四邊形PMEC是平行四邊形?若存在請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,作PN⊥AD于點(diǎn)N,設(shè)△PMN的周長(zhǎng)為m,點(diǎn)P的橫坐標(biāo)為x,求m與x的函數(shù)關(guān)系式,并求出m的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,直線與x軸相交于點(diǎn)A,與直線相交于點(diǎn)P.動(dòng)點(diǎn)E從原點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿著OPA的路線向點(diǎn)A勻速運(yùn)動(dòng)(E不與點(diǎn)O,A重合),過點(diǎn)E分別作EF⊥x軸于F,EB⊥y軸于B.設(shè)運(yùn)動(dòng)t秒時(shí),矩形EBOF與△OPA重疊部分面積為S.

(1)求點(diǎn)P的坐標(biāo);
(2)請(qǐng)判斷△OPA的形狀并說(shuō)明理由;
(3)請(qǐng)?zhí)骄縎與t之間的函數(shù)關(guān)系式,并指出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線y=ax2+bx+c經(jīng)過(-1,0),(0,-3),(2,-3)三點(diǎn),求這條拋物線的解析式,并指出對(duì)稱軸和頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直線AB分別交y軸、x 軸于A、B兩點(diǎn),OA=2,,拋物線過A、B兩點(diǎn).

(1)求直線AB和這個(gè)拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為D,求△ABD的面積
(3)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個(gè)拋物線于N.求當(dāng)t 取何值時(shí),MN的長(zhǎng)度l有最大值?最大值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案