【題目】閱讀理解題
定義:如果四邊形的某條對(duì)角線平分一組角,那么把這條對(duì)角線叫“美妙線”,該四邊形叫做“美妙四邊形”.
如圖:在四邊形ABCD中,對(duì)角線BC平分∠ACD和∠ABD,那么對(duì)角線BC叫“美妙線”,四邊形ABCD就稱為“美妙四邊形”.
問題:(1)下列四邊形中是“美妙四邊形”的有_______個(gè).
①平行四邊形 ②矩形 ③菱形 ④正方形
A.1 B. 2 C. 3 D.4
(2)四邊形ABCD是“美妙四邊形”,AB=3+,∠BAD=60°,∠ABC=90°,求四邊形ABCD的面積.
(3)如圖,若△ABC中,AB=3,BC=4,∠B=90°,將△ABC擴(kuò)充成以AC為“美妙線”的“美妙四邊形”ABCD,試求D到BC的距離.
【答案】(1)B;(2)①S=②S=;(3)
【解析】
(1)根據(jù)“美妙四邊形”的定義,結(jié)合平行四邊形,矩形,菱形 ,正方形的性質(zhì)即可判斷.
(2)分①當(dāng)AC是美妙線時(shí)和②當(dāng)BD是美妙線時(shí),兩種情況進(jìn)行討論.
(3)如圖,過D作MN∥BC交BA延長線于點(diǎn)M且CN⊥MN,證明△MDA∽△NCD
根據(jù)相似三角形的性質(zhì)得到設(shè)AM=3x,則DN=4x,MD=4-4x,CN=3x+3,得到,解方程求出的值,即可求解.
.解:(1)菱形和正方形是“美妙四邊形”.
故答案為:B
(2)①當(dāng)AC是美妙線時(shí),如圖
AB=3+,∠BAD=60°,
,
,
②當(dāng)BD是美妙線時(shí),如圖,過D作DH⊥AB,
設(shè)AH=a,則
∴
∴
∴DH=3,
,
綜上所述:S=或
(3)如圖,過D作MN∥BC交BA延長線于點(diǎn)M且CN⊥MN
由題意,得∠M=∠N=90°
∠MDA+∠MAD=90°
∠MDA+∠CDN=90°
∴∠MAD=∠CDN
∴△MDA∽△NCD
設(shè)AM=3x,則DN=4x,MD=4-4x,CN=3x+3
∴x=,
∴DH=3x+3=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游泳館每年夏季推出兩種游泳付費(fèi)方式.方式一:先購買會(huì)員證,每張會(huì)員證100元,只限本人當(dāng)年使用,憑證游泳每次再付費(fèi)4元;方式二:不購買會(huì)員證,每次游泳付費(fèi)10元.設(shè)小明計(jì)劃今年夏季游泳次數(shù)為x(x為正整數(shù)).
(1)根據(jù)題意,填寫下表:
游泳次數(shù) | 10 | 15 | 20 | … | x |
方式一的總費(fèi)用(元) | 140 | 160 | _______ | … | _______ |
方式二的總費(fèi)用(元) | 100 | 150 | ________ | … | ________ |
(2)若小明計(jì)劃今年夏季游泳的總費(fèi)用為260元,選擇哪種付費(fèi)方式,他游泳的次數(shù)比較多?
(3)小明選擇哪種付費(fèi)方式更合算?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在水果銷售旺季,某水果店購進(jìn)一優(yōu)質(zhì)水果,進(jìn)價(jià)為20元/千克,售價(jià)不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價(jià)x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.
銷售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價(jià)x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價(jià)為23.5元/千克,求當(dāng)天該水果的銷售量.
(2)如果某天銷售這種水果獲利150元,那么該天水果的售價(jià)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑作半圓O,點(diǎn)C是半圓上一點(diǎn),∠ABC的平分線交⊙O于E,D為BE延長線上一點(diǎn),且∠DAE=∠FAE.
(1)求證:AD為⊙O切線;
(2)若sin∠BAC=,求tan∠AFO的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分) 青少年沉迷于手機(jī)游戲,嚴(yán)重危害他們的身心健康,此問題已引起社會(huì)各界的高度關(guān)注,有關(guān)部門在全國范圍內(nèi)對(duì)12﹣35歲的“王者榮耀”玩家進(jìn)行了簡單的隨機(jī)抽樣調(diào)查,繪制出以下兩幅統(tǒng)計(jì)圖.
請根據(jù)圖中的信息,回答下列問題:
(1)這次抽樣調(diào)查中共調(diào)查了 人;
(2)扇形統(tǒng)計(jì)圖中18﹣23歲部分的圓心角的度數(shù)是_________;
(3)據(jù)報(bào)道,目前我國12﹣35歲“王者榮耀”玩家的人數(shù)約為2000萬,請估計(jì)其中12﹣23歲的人數(shù).
(4)根據(jù)對(duì)統(tǒng)計(jì)圖表的分析,請你為沉迷游戲的同學(xué)提一個(gè)合理化建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小東設(shè)計(jì)的“作圓的一個(gè)內(nèi)接矩形,并使其對(duì)角線的夾角為”的尺規(guī)作圖過程.
已知:.求作:矩形,使得矩形內(nèi)接于,且其對(duì)角線的夾角為.
作法:如圖,
①作的直徑;
②以點(diǎn)為圓心,長為半徑畫弧,交直線上方的圓弧于點(diǎn);
③連接并延長交于點(diǎn);
④連接.
所以四邊形就是所求作的矩形,根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡).
(2)完成下面的證明.
證明:∵點(diǎn)都在上,
∴.
同理.
∴四邊形是平行四邊形.
∵是的直徑,
∴( )(填推理的依據(jù)).
∴四邊形是矩形.
∵ ,
∴.
∴四邊形是所求作的矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P和圖形W,如果以P為端點(diǎn)的任意一條射線與圖形W最多只有一個(gè)公共點(diǎn),那么稱點(diǎn)P獨(dú)立于圖形W.
(1)如圖1,已知點(diǎn)A(-2,0),以原點(diǎn)O為圓心,OA長為半徑畫弧交x軸正半軸于點(diǎn)B.在P1(0,4),P2(0,1),P3(0,-3),P4(4,0)這四個(gè)點(diǎn)中,獨(dú)立于的點(diǎn)是 ;
(2)如圖2,已知點(diǎn)C(-3,0),D(0,3),E(3,0),點(diǎn)P是直線l:y=2x+8上的一個(gè)動(dòng)點(diǎn).若點(diǎn)P獨(dú)立于折線CD-DE,求點(diǎn)P的橫坐標(biāo)xp的取值范圍;
(3)如圖3,⊙H是以點(diǎn)H(0,4)為圓心,半徑為1的圓.點(diǎn)T(0,t)在y軸上且t>-3,以點(diǎn)T為中心的正方形KLMN的頂點(diǎn)K的坐標(biāo)為(0,t+3),將正方形KLMN在x軸及x軸上方的部分記為圖形W.若⊙H上的所有點(diǎn)都獨(dú)立于圖形W,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:點(diǎn)P在一次函數(shù)圖象上,點(diǎn)Q在反比例函數(shù)圖象上,若存在點(diǎn)P與點(diǎn)Q關(guān)于原點(diǎn)對(duì)稱,我們稱二次函數(shù)為一次函數(shù)與反比例函數(shù)的“新時(shí)代函數(shù)”,點(diǎn)P稱為“幸福點(diǎn)”。
(1)判斷與是否存在“新時(shí)代函數(shù)”,如果存在,請求出“幸福點(diǎn)”坐標(biāo),如果不存在,請說明理由;
(2)若反比例函數(shù)與一次函數(shù)有兩個(gè)“幸福點(diǎn)”,和,且,求其“新時(shí)代函數(shù)”的解析式;
(3)若一次函數(shù)和反比例函數(shù)在自變量x的值滿足的情況下,其“新時(shí)代函數(shù)”的最小值為3,求m的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸相交于點(diǎn),與軸相交于、兩點(diǎn),且點(diǎn)在點(diǎn)的右側(cè),設(shè)拋物線的頂點(diǎn)為.
(1)若點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,求的值;
(2)若,求的面積;
(3)當(dāng)時(shí),該拋物線上最高點(diǎn)與最低點(diǎn)縱坐標(biāo)的差為,求出與的關(guān)系;若有最大值或最小值,直接寫出這個(gè)最大值或最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com