【題目】下面是小東設(shè)計(jì)的“作圓的一個(gè)內(nèi)接矩形,并使其對(duì)角線(xiàn)的夾角為”的尺規(guī)作圖過(guò)程.
已知:.求作:矩形,使得矩形內(nèi)接于,且其對(duì)角線(xiàn)的夾角為.
作法:如圖,
①作的直徑;
②以點(diǎn)為圓心,長(zhǎng)為半徑畫(huà)弧,交直線(xiàn)上方的圓弧于點(diǎn);
③連接并延長(zhǎng)交于點(diǎn);
④連接.
所以四邊形就是所求作的矩形,根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡).
(2)完成下面的證明.
證明:∵點(diǎn)都在上,
∴.
同理.
∴四邊形是平行四邊形.
∵是的直徑,
∴( )(填推理的依據(jù)).
∴四邊形是矩形.
∵ ,
∴.
∴四邊形是所求作的矩形.
【答案】(1)見(jiàn)解析;(2)直徑所對(duì)圓周角為直角,.
【解析】
(1)根據(jù)作法畫(huà)出對(duì)應(yīng)的幾何圖形即可;
(2)先根據(jù)圓的基本性質(zhì)得OA=OA,OB=OD,從而可以判斷四邊形ABCD是平行四邊形.再根據(jù)直徑所對(duì)的圓周角是直角得,從而可得四邊形ABCD是矩形.
(1)如圖,四邊形ABCD為所作;
(2)完成下面的證明.
證明:∵點(diǎn)都在上,
∴.
同理.
∴四邊形是平行四邊形.
∵是的直徑,
∴(直徑所對(duì)圓周角為直角).
∴四邊形是矩形.
∵AO,
∴.
∴四邊形是所求作的矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是一組有規(guī)律的圖案,第1個(gè)圖案由4個(gè)基礎(chǔ)圖形組成,第2個(gè)圖案由7個(gè)基礎(chǔ)圖形組成,……,則組成第4個(gè)圖案的基礎(chǔ)圖形的個(gè)數(shù)為( ).
A. 11B. 12C. 13D. 14
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),且與軸另交點(diǎn)為.
(1)求拋物線(xiàn)的解析式;
(2)如圖,直線(xiàn)與拋物線(xiàn)相交于點(diǎn)和點(diǎn)(點(diǎn)在第二象限),求的值(用含的式子表示);
(3)在(2)中,若,設(shè)點(diǎn)是點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn),如圖.平面內(nèi)是否存在點(diǎn),使得以點(diǎn)、、、為頂點(diǎn)的四邊形是菱形?若存在,直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線(xiàn)y=x經(jīng)過(guò)點(diǎn)A,作AB⊥x軸于點(diǎn)B,將△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到△CBD,若點(diǎn)B的坐標(biāo)為(2,0),則點(diǎn)C的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解題
定義:如果四邊形的某條對(duì)角線(xiàn)平分一組角,那么把這條對(duì)角線(xiàn)叫“美妙線(xiàn)”,該四邊形叫做“美妙四邊形”.
如圖:在四邊形ABCD中,對(duì)角線(xiàn)BC平分∠ACD和∠ABD,那么對(duì)角線(xiàn)BC叫“美妙線(xiàn)”,四邊形ABCD就稱(chēng)為“美妙四邊形”.
問(wèn)題:(1)下列四邊形中是“美妙四邊形”的有_______個(gè).
①平行四邊形 ②矩形 ③菱形 ④正方形
A.1 B. 2 C. 3 D.4
(2)四邊形ABCD是“美妙四邊形”,AB=3+,∠BAD=60°,∠ABC=90°,求四邊形ABCD的面積.
(3)如圖,若△ABC中,AB=3,BC=4,∠B=90°,將△ABC擴(kuò)充成以AC為“美妙線(xiàn)”的“美妙四邊形”ABCD,試求D到BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=-x2+mx+n與x軸交于點(diǎn)A,B(A在B的左側(cè)).
(1)拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=-3,AB=4.求拋物線(xiàn)的表達(dá)式;
(2)平移(1)中的拋物線(xiàn),使平移后的拋物線(xiàn)經(jīng)過(guò)點(diǎn)O,且與x正半軸交于點(diǎn)C,記平移后的拋物線(xiàn)頂點(diǎn)為P,若△OCP是等腰直角三角形,求點(diǎn)P的坐標(biāo);
(3)當(dāng)m=4時(shí),拋物線(xiàn)上有兩點(diǎn)M(x1,y1)和N(x2,y2),若x1<2,x2>2,x1+x2>4,試判斷y1與y2的大小,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,平分,交于點(diǎn),平分,交于點(diǎn),與交于點(diǎn),連接,.
(1)求證:四邊形是菱形;
(2)若,,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】哈爾濱市某校成立了“航模”、“古詩(shī)詞欣賞”、“音樂(lè)”、“書(shū)法”四個(gè)興趣小組,為了解興趣小組報(bào)名的情況,對(duì)本校參加報(bào)名的部分學(xué)生進(jìn)行了抽查(參加報(bào)名的學(xué)生,每名學(xué)生必報(bào)且限報(bào)一個(gè)興趣小組),學(xué)校根據(jù)調(diào)查的數(shù)據(jù)繪制了以下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下面的問(wèn)題:
(1)此次共調(diào)查了______名學(xué)生,扇形統(tǒng)計(jì)圖中“航模”部分的圓心角是______度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)現(xiàn)該校共有800名學(xué)生報(bào)名參加了這四個(gè)興趣小組,請(qǐng)你估計(jì)其中有多少名學(xué)生選修“古詩(shī)詞欣賞”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在大課間活動(dòng)中,同學(xué)們積極參加體育鍛煉,小明就本班同學(xué)“我最喜愛(ài)的體育項(xiàng)目”進(jìn)行了一次調(diào)查統(tǒng)計(jì),下面是他通過(guò)收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息,解答以下問(wèn)題:
(1)該班共有_____名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“乒乓球”部分所對(duì)應(yīng)的圓心角度數(shù)為_____;
(4)學(xué)校將舉辦體育節(jié),該班將推選5位同學(xué)參加乒乓球活動(dòng),有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹(shù)狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com