【題目】如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,,,為格點(diǎn),為小正方形邊的中點(diǎn).
(1)的長等于_________;
(2)點(diǎn),分別為線段,上的動(dòng)點(diǎn),當(dāng)取得最小值時(shí),請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出線段,,并簡要說明點(diǎn)和點(diǎn)的位置是如何找到的(不要求證明).
【答案】(1)5;(2)見解析
【解析】
(1)直接利用勾股定理計(jì)算可得;
(2)令BC與網(wǎng)格交于P,再分別取網(wǎng)格線中點(diǎn)G和H,連接,與AC交于Q,從而可得.
解:(1)由圖可得:
AC=,
故答案為:5;
(2)如圖,與網(wǎng)格線相交,得點(diǎn);取格點(diǎn),,連接,與網(wǎng)格線相交,得點(diǎn),取格點(diǎn),,連接,與網(wǎng)格線相交,得點(diǎn),連接,與相交,得點(diǎn).連接,.線段,即為所求.
如圖,延長DP,交網(wǎng)格線于點(diǎn)T,連接AB,GH與DP交于點(diǎn)S,
由計(jì)算可得:AB=,BC=,AC=5,
∴△ABC為直角三角形,∠ABC=90°,
∴tan∠ACB=2,
∵tan∠BCT=PT:TC=2,
∴∠ACB=∠BCT,即BC平分∠ACT,
根據(jù)畫圖可知:GH∥BC,
∴∠ACB=∠CQH,∠BCT=∠GHC,
∵∠BCT=∠BCA,
∴∠CQH=∠GHC,
∴CQ=CH,
由題意可得:BS=CH,
∴BS=CQ,
又∵BP=CP,∠PBS=∠PCQ,
∴△BPS≌△CPQ,
∴∠PSB=∠PHC=90°,即PQ⊥AC,
∴PD+PQ的最小值即為PD+PT,
∴所畫圖形符合要求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:
我們知道若一個(gè)矩形的周長固定,當(dāng)相鄰兩邊相等,即為正方形時(shí),面積是最大的,反過來,若一個(gè)矩形的面積固定,它的周長是否會(huì)有最值呢?
方法探究:
用兩條直角邊分別為、的四個(gè)全等的直角三角形,可以拼成一個(gè)正方形,
若,可以拼成如圖1的正方形,從而得到,即;
若,可以拼成如圖2的正方形,從而得到,即.
于是我們可以得到結(jié)論:,為正數(shù),總有,且當(dāng)時(shí),代數(shù)式取得最小值為.
另外,我們也可以通過代數(shù)式運(yùn)算得到類似上面的結(jié)論.
∵,
∴,,
∴對(duì)于任意實(shí)數(shù),,總有,
且當(dāng)時(shí),代數(shù)式取得最小值為.
類比應(yīng)用:
(1)對(duì)于正數(shù),,試比較和的大小關(guān)系,并說明理由.
(2)填空:
當(dāng)時(shí),________.
代數(shù)式有最________值為________.
問題解決:
(3)若一個(gè)矩形的面積固定為,它的周長是否會(huì)有最值呢?若有,求出周長的最值,及此時(shí)矩形的長和寬;若沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)()的圖象與直線交于點(diǎn).
(1)求、的值;
(2)已知點(diǎn)在直線()上運(yùn)動(dòng)設(shè)點(diǎn)坐標(biāo)為,過點(diǎn)作平行于軸的直線,交直線于點(diǎn),過點(diǎn)作平行于軸的直線,交函數(shù)()的圖象于點(diǎn).
①當(dāng)時(shí),判斷線段與的數(shù)量關(guān)系,并說明理由;
②若,結(jié)合函數(shù)的圖象,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=2,BC=4,點(diǎn)P是CB邊上的一點(diǎn),且tan∠PAC=,⊙O是△APB的外接圓.
(1)求證:∠PAC=∠ABC;
(2)求證:AC是⊙O的切線;
(3)求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,正方形與正方形有公共的頂點(diǎn),連接,,,.
①求證:;
②求的值;
(2)將圖1中的正方形旋轉(zhuǎn)到圖2的位置,當(dāng),,在一條直線上,若,求正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形中,為的中點(diǎn),一塊足夠大的三角板的直角頂點(diǎn)與點(diǎn)重合,將三角板繞點(diǎn)旋轉(zhuǎn),三角板的兩直角邊分別交或它們的延長線)于點(diǎn),設(shè),下列四個(gè)結(jié)論:①;②; ③;④,正確的個(gè)數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知:點(diǎn)A(﹣4,0),B (0,3)分別是x、y軸上的兩點(diǎn).
(1)用尺規(guī)作圖作出△ABO的外接圓⊙P;(不寫作法,保留作圖痕跡)
(2)求出⊙P向上平移幾個(gè)單位后與x軸相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖8,點(diǎn)D是⊙O的直徑CA延長線上一點(diǎn),點(diǎn)B在⊙O上,且AB=AD=AO.
(1)求證:BD是⊙O的切線.
(2)若點(diǎn)E是劣弧BC上一點(diǎn),AE與BC相交于點(diǎn)F,且△BEF的面積為8,cos∠BFA=,求△ACF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初三(1)班針對(duì)“垃圾分類”知曉情況對(duì)全班學(xué)生進(jìn)行專題調(diào)查活動(dòng),對(duì)“垃圾分類”的知曉情況分為、、、四類.其中,類表示“非常了解”,類表示“比較了解”,類表示“基本了解”,類表示“不太了解”,每名學(xué)生可根據(jù)自己的情況任選其中一類,班長根據(jù)調(diào)查結(jié)果進(jìn)行了統(tǒng)計(jì),并繪制成了不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
“垃圾分類”知曉情況各類別人數(shù)條形統(tǒng)計(jì)圖 “垃圾分類”知曉情況各類別人數(shù)扇形統(tǒng)計(jì)圖
根據(jù)以上信息解決下列問題:
(1)初三(1)班參加這次調(diào)查的學(xué)生有______人,扇形統(tǒng)計(jì)圖中類別所對(duì)應(yīng)扇形的圓心角度數(shù)為______°;
(2)求出類別的學(xué)生數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)類別的4名學(xué)生中有2名男生和2名女生,現(xiàn)從這4名學(xué)生中隨機(jī)選取2名學(xué)生參加學(xué)校“垃圾分類”知識(shí)競賽,請(qǐng)用列舉法(畫樹狀圖或列表)求所選取的2名學(xué)生中恰好有1名男生、1名女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com