【題目】如圖,以△ABC的三邊為邊分別作等邊△ACD、△ABE、△BCF,則下列結(jié)論::①△EBF≌△DFC;②四邊形AEFD為平行四邊形;③當(dāng)AB=AC,∠BAC=120°時(shí),四邊形AEFD是正方形.其中正確的結(jié)論是 . (請(qǐng)寫出正確結(jié)論的序號(hào)).
【答案】①②
【解析】解:∵△ABE、△BCF為等邊三角形,
∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°,
∴∠ABE﹣∠ABF=∠FBC﹣∠ABF,即∠CBA=∠FBE,
在△ABC和△EBF中,
,
∴△ABC≌△EBF(SAS),
∴EF=AC,
又∵△ADC為等邊三角形,
∴CD=AD=AC,
∴EF=AD=DC,
同理可得△ABC≌△DFC,
∴DF=AB=AE=DF,
∴四邊形AEFD是平行四邊形,選項(xiàng)②正確;
∴∠FEA=∠ADF,
∴∠FEA+∠AEB=∠ADF+∠ADC,即∠FEB=∠CDF,
在△FEB和△CDF中,
.
∴△FEB≌△CDF(SAS),選項(xiàng)①正確;
若AB=AC,∠BAC=120°,則有AE=AD,∠EAD=120°,此時(shí)AEFD為菱形,選項(xiàng)③錯(cuò)誤,
所以答案是:①②.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等邊三角形的性質(zhì)(等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°),還要掌握平行四邊形的判定(兩組對(duì)邊分別平行的四邊形是平行四邊形:兩組對(duì)邊分別相等的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)角分別相等的四邊形是平行四邊形;對(duì)角線互相平分的四邊形是平行四邊形)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y=﹣2x2﹣1向上平移若干個(gè)單位,使拋物線與坐標(biāo)軸有三個(gè)交點(diǎn),如果這些交點(diǎn)能夠成等邊三角形,那么平移的距離為( )
A.1個(gè)單位
B. 個(gè)單位
C. 個(gè)單位
D. 個(gè)單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線 AB與直線 CD交于點(diǎn) O,過點(diǎn) O作 OE⊥AB.
①如圖 1,OP 為∠AOD 內(nèi)的一條射線,若∠1=∠2,求證:OP⊥CD;
②如圖 2,若∠BOC=2∠AOC,求∠COE 的度數(shù);
③如圖 3.在(2)的條件下,過點(diǎn) O 作 OF⊥CD,經(jīng)過點(diǎn) O 畫直線 MN,若射線 OM平分∠BOD,請(qǐng)直接寫出圖中與 2∠EOF 度數(shù)相等的角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD,其中AD//BC,AB⊥BC,將DC沿DE折疊,C落于,交CB于G,且ABGD為長(zhǎng)方形(如圖1);再將紙片展開,將AD沿DF折疊,使A點(diǎn)落在DC上一點(diǎn)(如圖2),在兩次折疊過程中,兩條折痕DE、DF所成的角為____________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個(gè)交點(diǎn)B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:
①2a+b=0;
②abc>0;
③方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;
④拋物線與x軸的另一個(gè)交點(diǎn)是(﹣1,0);
⑤當(dāng)1<x<4時(shí),有y2<y1 ,
其中正確的是( )
A.①②③
B.①③④
C.①③⑤
D.②④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC的平分線交BC于點(diǎn)D,E是AB上一點(diǎn),且AE=AC,EF∥BC交AD于點(diǎn)F.
求證:四邊形CDEF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)O在△ABC的內(nèi)部,∠BOC=90°,OB=OC,D,E,F,G分別是AB,OB,OC,AC的中點(diǎn).
(1)求證:四邊形DEFG是矩形;
(2)若DE=2,EF=3,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AB∥CD,C在 D的右側(cè),BE平分∠ABC,DE平分∠ADC,BE、DE所在的直線交于點(diǎn) E.∠ADC=70°.
(1)求∠EDC 的度數(shù);
(2)若∠ABC=30°,求∠BED 的度數(shù);
(3)將線段 BC沿 DC方向移動(dòng),使得點(diǎn) B在點(diǎn) A的右側(cè),其他條件不變,若∠ABC=n°,請(qǐng)直接寫出∠BED 的度數(shù)(用含 n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BC,CD,DA運(yùn)動(dòng)到點(diǎn)A停止,設(shè)點(diǎn)P運(yùn)動(dòng)路程為x,△ABP的面積為y,如果y關(guān)于x的函數(shù)圖象如圖(2)所示,則矩形ABCD的面積是( 。
A. 10B. 16C. 20D. 36
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com