【題目】如圖,在△ABC中,AB=AC=4,BC=2,點P、E、F分別為邊BC、AB、AC上的任意點,則PE+PF的最小值是_____.
【答案】
【解析】
當PE⊥AB,PF⊥AC時,PE+PF的值最小.
解:如圖,作CG⊥AB于G,PH⊥CG于H,
當PE⊥AB,PF⊥AC時,則∠EGH=GHP=∠PEG=90°,
∴四邊形PEGH為矩形,
∴PE=HG,PH∥AB,
∴∠B=∠HPC,
∵AB=AC,
∴∠B=∠FCP,
∴∠HPC=∠FCP,
∵∠PHC=∠CFP=90°,PC=CP,
∴△PHC≌△CFP(AAS),
∴CH=PF
∴PE+PF=HG+CH=CG,
故此時PE+PF將取得最小值.
在Rt△ACG中,
∵AC=4,
∴CG2=AC2-AG2=42-AG2,
在Rt△BCG中,
∵BC=2,BG=AB-AG=4-AG,
∴CG2=BC2-BG2=22-(4-AG)2,
∴42-AG2=22-(4-AG)2,
∴AG=,
∴CG===,
∴PE+PF=,
即PE+PF的最小值為.
故答案為:.
科目:初中數學 來源: 題型:
【題目】已知△ABC是等邊三角形,以BC為直徑的半圓O與邊AB相交于點D,DE⊥AC,垂足為點E.
(1)判斷DE與⊙O的位置關系,并證明你的結論;
(2)若AE=1,求⊙O的直徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=8,BC=10,P為邊BC上一動點(且點P不與點B、C重合),PE⊥AB于E,PF⊥AC于F,M為EF中點.設AM的長為x,則x的取值范圍是( )
A. 4≥x>2.4 B. 4≥x≥2.4 C. 4>x>2.4 D. 4>x≥2.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=2,以AB為直徑的⊙O分別交BC、AC于點D、E,且點D為BC的中點.
(1)求證:△ABC為等邊三角形;
(2)求DE的長;
(3)在線段AB的延長線上是否存在一點P,使△PBD≌△AED?若存在,請求出PB的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】.如圖所示,已知△ABC和△BDE都是等邊三角形,下列結論:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等邊三角形;⑥FG∥AD,其中正確的有( )
A. 3個 B. 4個 C. 5個 D. 6個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:等腰△ABC的底邊BC長為6,面積是18,腰AC的垂直平分線EF分別交AC,AB邊于E,F點.若點D為BC邊的中點,點M為線段EF上一動點,則△CDM周長的最小值為( 。
A. 6 B. 8 C. 9 D. 10
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線L1:y=﹣x2+bx+c經過點A(1,0)和點B(5,0)已知直線l的解析式為y=kx﹣5.
(1)求拋物線L1的解析式、對稱軸和頂點坐標.
(2)若直線l將線段AB分成1:3兩部分,求k的值;
(3)當k=2時,直線與拋物線交于M、N兩點,點P是拋物線位于直線上方的一點,當△PMN面積最大時,求P點坐標,并求面積的最大值.
(4)將拋物線L1在x軸上方的部分沿x軸折疊到x軸下方,將這部分圖象與原拋物線剩余的部分組成的新圖象記為L2
①直接寫出y隨x的增大而增大時x的取值范圍;
②直接寫出直線l與圖象L2有四個交點時k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com