【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正確的結(jié)論有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

【答案】B
【解析】解:①∵拋物線開口向下,
∴a<0.
∵拋物線的對稱軸為x=﹣ =1,
∴b=﹣2a>0.
當(dāng)x=0時(shí),y=c>0,
∴abc<0,①錯(cuò)誤;
②當(dāng)x=﹣1時(shí),y<0,
∴a﹣b+c<0,
∴b>a+c,②錯(cuò)誤;
③∵拋物線的對稱軸為x=1,
∴當(dāng)x=2時(shí)與x=0時(shí),y值相等,
∵當(dāng)x=0時(shí),y=c>0,
∴4a+2b+c=c>0,③正確;
④∵拋物線與x軸有兩個(gè)不相同的交點(diǎn),
∴一元二次方程ax2+bx+c=0,
∴△=b2﹣4ac>0,④正確.
綜上可知:成立的結(jié)論有2個(gè).
故選B.
由拋物線的開口方程、拋物線的對稱軸以及當(dāng)x=0時(shí)的y值,即可得出a、b、c的正負(fù),進(jìn)而即可得出①錯(cuò)誤;由x=﹣1時(shí),y<0,即可得出a﹣b+c<0,進(jìn)而即可得出②錯(cuò)誤;由拋物線的對稱軸為x=1結(jié)合x=0時(shí)y>0,即可得出當(dāng)x=2時(shí)y>0,進(jìn)而得出4a+2b+c=c>0,③成立;由二次函數(shù)圖象與x軸交于不同的兩點(diǎn),結(jié)合根的判別式即可得出△=b2﹣4ac>0,④成立.綜上即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王沿街勻速行走,發(fā)現(xiàn)每隔6分鐘從背后駛過一輛18路公交車,每隔3分鐘從迎面駛來一輛18路公交車.假設(shè)每輛18路公交車行駛速度相同,而且18路公交車總站每隔固定時(shí)間發(fā)一輛車,那么發(fā)車間隔的時(shí)間是(  )

A. 3分鐘 B. 4分鐘 C. 5分鐘 D. 6分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC為等邊三角形,AQPQ,PRAB于點(diǎn)RPSAC于點(diǎn)S,PRPS,有下列四個(gè)結(jié)論:①點(diǎn)P在∠BAC的平分線上;②ASAR;QPAB;④△BRP≌△CSP.其中,正確的有__________(填序號即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次蠟燭燃燒實(shí)驗(yàn)中,甲、乙兩根蠟燭燃燒時(shí)剩余部分的高度y(cm)與燃燒時(shí)間x(h)之間的關(guān)系如圖所示,請根據(jù)圖象所提供的信息解答下列問題:

(1)甲、乙兩根蠟燭燃燒前的高度分別是__________,從點(diǎn)燃到燃盡所用的時(shí)間分別是________;

(2)分別求甲、乙兩根蠟燭燃燒時(shí)yx之間的函數(shù)關(guān)系式;

(3)燃燒多長時(shí)間,甲、乙兩根蠟燭的高度相同?(不考慮都燃盡時(shí)的情況)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MON=90°,點(diǎn)A,B分別在射線OM,ON上移動,∠OAB的平分線與∠OBA的外角平分線交于點(diǎn)C,試猜想:隨著點(diǎn)A,B的移動,∠ACB的大小是否發(fā)生變化,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,利用一面墻(墻的長度不超過45m),用80m長的籬笆圍一個(gè)矩形場地.

(1)怎樣圍才能使矩形場地的面積為750m2?
(2)能否使所圍矩形場地的面積為810m2 , 為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實(shí)施,商場決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺.
(1)假設(shè)每臺冰箱降價(jià)x元,商場每天銷售這種冰箱的利潤是y元,請寫出y與x之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺冰箱應(yīng)降價(jià)多少元?
(3)每臺冰箱降價(jià)多少元時(shí),商場每天銷售這種冰箱的利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=1,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°至△A′B′C,點(diǎn)A的對應(yīng)點(diǎn)A′恰好落在AB上,求BB′的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列語句,設(shè)適當(dāng)?shù)奈粗獢?shù),列出二元一次方程:

甲數(shù)比乙數(shù)的倍少;

甲數(shù)的倍與乙數(shù)的倍的和是;

甲數(shù)的與乙數(shù)的的差是;

甲數(shù)與乙數(shù)的和的倍比乙數(shù)與甲數(shù)差的

查看答案和解析>>

同步練習(xí)冊答案