【題目】根據(jù)下列語句,設(shè)適當(dāng)?shù)奈粗獢?shù),列出二元一次方程:

甲數(shù)比乙數(shù)的倍少;

甲數(shù)的倍與乙數(shù)的倍的和是

甲數(shù)的與乙數(shù)的的差是

甲數(shù)與乙數(shù)的和的倍比乙數(shù)與甲數(shù)差的

【答案】;;

【解析】

(1)關(guān)系式為:甲數(shù)=乙數(shù)的3-7,設(shè)出兩個未知數(shù),把相關(guān)數(shù)值代入即可求得所列代數(shù)式;

(2)關(guān)系式為:甲數(shù)的2+乙數(shù)的5=4,設(shè)出兩個未知數(shù),把相關(guān)數(shù)值代入即可求得所列代數(shù)式;

(3)關(guān)系式為:甲數(shù)的15%-乙數(shù)的23%=11,設(shè)出兩個未知數(shù),把相關(guān)數(shù)值代入即可求得所列代數(shù)式;

(4)關(guān)系式為:甲數(shù)與乙數(shù)的和的2-乙數(shù)與甲數(shù)差的=0.25,設(shè)出兩個未知數(shù),把相關(guān)數(shù)值代入即可求得所列代數(shù)式.

設(shè)乙數(shù)為,甲數(shù)為,則

設(shè)甲數(shù)為,乙數(shù)為,則;

設(shè)甲數(shù)為,乙數(shù)為,則;

設(shè)甲數(shù)為,乙數(shù)為,則

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正確的結(jié)論有( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在菱形ABCD中,∠ABC=60°,M、N分別是邊BC,CD上的兩個動點,∠MAN=60°,AM、AN分別交BDE、F兩點.

(1)如圖1,求證:CM+CN=BC;

(2)如圖2,過點EEGANDC延長線于點G,求證:EG=EA;

(3)如圖3,若AB=1,AED=45°,直接寫出EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是等邊三角形ABC內(nèi)一點,將線段AD繞點A順時針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.

(1)求證:∠AEB=∠ADC;

(2)連接DE,若ADC=105°,求BED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x1、x2是一元二次方程2x2﹣2x+1﹣3m=0的兩個實數(shù)根,且x1、x2滿足不等式x1x2+2(x1+x2)>0,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△COD是△AOB繞點O順時針旋轉(zhuǎn)40°后得到的圖形,若點C恰好落在AB上,且∠AOD的度數(shù)為90°,則∠B的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△COD是△AOB繞點O順時針旋轉(zhuǎn)40°后得到的圖形,若點C恰好落在AB上,且∠AOD的度數(shù)為90°,則∠B的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(﹣ 2+ ﹣|﹣ |+(﹣π)0﹣(﹣1)2015

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長均為1,△A1B1C1和△A2B2C2的頂點都在方格紙的格點上.
(1)求△A1B1C1和△A2B2C2的面積比.
(2)點A1、D、E、F、G、H是△A1B1C1邊上的6個格點,請在這6個格點中選取3個點作為三角形的頂點,使構(gòu)成的三角形與△A2B2C2相似(要求寫出2個符合條件的三角形,并分別在圖1和圖2中將相應(yīng)三角形涂黑,不必說明理由).

查看答案和解析>>

同步練習(xí)冊答案