【題目】如圖,在△ABC中,ABBC,BEAC于點(diǎn)E,ADBC于點(diǎn)D,∠BAD45°,ADBE交于點(diǎn)F,連接CF.

1)求證△ACD≌△BFD

2)求證:BF2AE;

3)若CD,求AD的長(zhǎng).

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)AD =2+

【解析】

1)先判定出ABD是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AD=BD,再根據(jù)同角的余角相等求出∠CAD=CBE,然后利用角邊角證明ADCBDF全等;

2)根據(jù)全等三角形對(duì)應(yīng)邊相等可得BF=AC,再根據(jù)等腰三角形三線合一的性質(zhì)可得AC=2AE,從而得證;

3)根據(jù)全等三角形對(duì)應(yīng)邊相等可得DF=CD,然后利用勾股定理列式求出CF,再根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AF=CF,然后根據(jù)AD=AF+DF代入數(shù)據(jù)即可得解.

1)∵ADBC,∠BAD=45°,

∴△ABD是等腰直角三角形,∴AD=BD,

BEAC,ADBC,

∴∠CAD+ACD=90°,∠CBE+ACD=90°

∴∠CAD=CBE,

ADCBDF中,

CAD=∠CBE,ADBD,∠ADC=∠BDF90°

∴△ACD≌△BFDASA

2)由(1)可知:BF=AC

AB=BC,BEAC,

AC=2AE,

BF=2AE;

(3) ∵△ACD≌△BFD,

DF=CD=

RtCDF中,CF=

BEAC,AE=EC,

AF=CF=2

AD=AF+DF=2+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019111日是重慶城市花博會(huì)在重慶江北嘴中央商務(wù)區(qū)舉行,商務(wù)區(qū)附近的某花店抓住商機(jī),從111日開始銷售AB兩種花束,A花束每束利潤(rùn)率是40%,B種花束每束利潤(rùn)率是20%,當(dāng)日,A種花束的銷量是B種花束銷量的,這兩種花束的總利潤(rùn)率是30%;112日在A、B兩種花束利潤(rùn)率保持不變的情況下,若要想當(dāng)日的總利潤(rùn)率達(dá)到35%,則A花束的銷量與B花束的銷量之比是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線ykx4(k≠0)x軸、y軸分別交于點(diǎn)B,A,直線y=-2x1y軸交于點(diǎn)C,與直線ykx4交于點(diǎn)D,△ACD的面積是 .

(1)求直線AB的表達(dá)式;

(2)設(shè)點(diǎn)E在直線AB上,當(dāng)△ACE是直角三角形時(shí),請(qǐng)直接寫出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,D為AB邊上一點(diǎn),E為CD中點(diǎn),AC=,∠ABC=30°,∠A=∠BED=45°,則BD的長(zhǎng)為( 。

A. B. +1﹣ C. D. ﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后的圖形是△A′B′C,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′落在中線AD上,且點(diǎn)A′△ABC的重心,A′B′BC相交于點(diǎn)E,那么BECE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,E、F在菱形的邊BC,CD上.

(1)證明:BE=CF.

(2)當(dāng)點(diǎn)E,F(xiàn)分別在邊BC,CD上移動(dòng)時(shí)(△AEF保持為正三角形),請(qǐng)?zhí)骄克倪呅蜛ECF的面積是否發(fā)生變化?若不變,求出這個(gè)定值;如果變化,求出其最大值.

(3)在(2)的情況下,請(qǐng)?zhí)骄俊鰿EF的面積是否發(fā)生變化?若不變,求出這個(gè)定值;如果變化,求出其最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明將一根長(zhǎng)為20厘米的鐵絲剪成兩段,然后分別圍成兩個(gè)正方形。設(shè)其中一段鐵絲長(zhǎng)為x厘米。

1)設(shè)較長(zhǎng)的一段鐵絲長(zhǎng)為xcm,請(qǐng)計(jì)算出這兩個(gè)正方形的面積之差;
2)是否存在合適的x的值,使兩個(gè)正方形的面積剛好相差5cm2?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線AD對(duì)應(yīng)的函數(shù)關(guān)系式為y=﹣2x﹣2,與拋物線交于點(diǎn)A(在x軸上),點(diǎn)D.拋物線與x軸另一交點(diǎn)為B(3,0),拋物線與y軸交點(diǎn)C(0,﹣6).

(1)求拋物線的解析式;

(2)如圖2,連結(jié)CD,過(guò)點(diǎn)D作x軸的垂線,垂足為點(diǎn)E,直線AD與y軸交點(diǎn)為F,若點(diǎn)P由點(diǎn)D出發(fā)以每秒1個(gè)單位的速度沿DE邊向點(diǎn)E移動(dòng),1秒后點(diǎn)Q也由點(diǎn)D出發(fā)以每秒3個(gè)單位的速度沿DC,CO,OE邊向點(diǎn)E移動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也停止移動(dòng),點(diǎn)P的移動(dòng)時(shí)間為t秒,當(dāng)PQ⊥DF時(shí),求t的值;圖3為備用圖)

(3)如果點(diǎn)M是直線BC上的動(dòng)點(diǎn),是否存在一個(gè)點(diǎn)M,使△ABM中有一個(gè)角為45°?如果存在,直接寫出所有滿足條件的M點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市射擊隊(duì)甲、乙兩名隊(duì)員在相同的條件下各射耙10次,每次射耙的成績(jī)情況如圖所示:

(1)請(qǐng)將下表補(bǔ)充完整:(參考公式:方差S2= [(x12+(x22+…+(xn2])

平均數(shù)

方差

中位數(shù)

7

   

7

   

5.4

   

(2)請(qǐng)從下列三個(gè)不同的角度對(duì)這次測(cè)試結(jié)果進(jìn)行

①?gòu)钠骄鶖?shù)和方差相結(jié)合看,   的成績(jī)好些;

②從平均數(shù)和中位數(shù)相結(jié)合看,   的成績(jī)好些;

③若其他隊(duì)選手最好成績(jī)?cè)?/span>9環(huán)左右,現(xiàn)要選一人參賽,你認(rèn)為選誰(shuí)參加,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案