【題目】我們知道,勾股定理反映了直角三角形三條邊的關系: a2+b2=c2, 而a2, b2, c2又可以看成是以a,b, c為邊長的正方形的面積.如圖,在Rt△ABC中,∠ACB=90°,BC=a, AC=b,O為AB的中點.分別以AC,BC 為邊向△ABC外作正方形ACFG,BCED,連結OF, EF, OE,則△OEF的面積為( )
A.B.C.D.
科目:初中數學 來源: 題型:
【題目】一個三位自然數(百位上的數字為,十位上的數字為,個位上的數字為). 若滿足,則稱這個三位數為“和悅數”,并規(guī)定. 如231,因為它的百位上的數字2與個位上的數字1之和等于十位上的數字3. 所以231是“和悅數”,所以.
(1)請任意寫出兩個“和悅數”,并猜想任意一個“和悅數”是否是11的倍數,請說明理由;
(2)已知有兩個十位上的數字相同的“和悅數”,若,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:拋物線y=x2﹣2(m﹣1)x﹣1﹣m
(1)當m=2時,求該拋物線的對稱軸和頂點坐標;
(2)設該拋物線與x軸交于A(x1,0)、B(x2,0),x1<0<x2,與y軸交于點C,且滿足,求這個拋物線的解析式;
(3)在(2)的條件下,是否存在著直線y=kx+b與拋物線交于點P、Q,使y軸平分△CPQ的面積?若存在,求出k,b應滿足的條件;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,正方形ABCD的邊長為4,點E, F分別在BC, BD上,且BE=1,過三點C, E, F作⊙O交CD于點G.
(1)證明∠EFG =90°.
(2)如圖2,連結AF,當點F運動至點A,F, G三點共線時,求的面積.
(3)在點F整個運動過程中,
①當EF, FG, CG中滿足某兩條線段相等,求所有滿足條件的BF的長.
②連接EG,若時,求⊙O的半徑(請直接寫出答案) .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:拋物線y=x2﹣2x+m與y軸交于點C(0,﹣2),點D和點C關于拋物線對稱軸對稱.
(1)求此拋物線的解析式和點D的坐標;
(2)如果點M是拋物線的對稱軸與x軸的交點,求MCD的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,AD=6,點E在AD邊上,且AE=4,EF⊥BE交CD于點F.
(1)求證:△ABE∽△DEF;
(2)求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+3的圖象經過點 (-3,0),(2,-5).
(1)試確定此二次函數的解析式;
(2)請你判斷點P(-2,3)是否在這個二次函數的圖象上?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com