如圖,在下面3個正方形格紙中,各有一個以格點為頂點的三角形,請分別在這些格紙中各畫一個(三邊都畫實線)與原三角形成軸對稱且也以格點為頂點的三角形.

每對一個得2分
正確理解軸對稱圖形的含義:沿著某條直線折疊能夠完全重合的圖形是軸對稱圖形。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在圖形的全等變換中,有旋轉變換,翻折(軸對稱)變換和平移變換.一次數(shù)學活動課上,老師組織大家利用矩形進行圖形變換的探究活動.

(1)第一小組的同學發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點O,Rt△ADC可以由Rt△ABC經(jīng)過一種變換得到,請你寫出這種變換的過程 ▲ 
(2)第二小組同學將矩形紙片ABCD按如下順序進行操作:對折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點B落在EF上的點B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請寫出求解過程.

(3)第三小組的同學,在一個矩形紙片上按照圖3-1的方式剪下△ABC,其中BABC,將△ABC沿著直線AC的方向依次進行平移變換,每次均移動AC的長度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,判斷以AD、AFAH為三邊能否構成三角形?若能構成,請判斷這個三角形的形狀,若不能構成,請說明理由.

(4)探究活動結束后,老師給大家留下了一道探究題:如圖4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,請利用圖形變換探究SAOB'+SBOC'+SCOA'的大小關系.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點A、B的坐標分別為(-1,3)、(-4,1),先
將線段AB沿一確定方向平移得到線段A1B1,點A的對應點為A1,點B1的坐標為(0,2),在將線段A1B1
繞遠點O順時針旋轉90°得到線段A2B2,點A1的對應點為點A2
(1)畫出線段A1B1、A2B2;
(2)直接寫出在這兩次變換過程中,點A經(jīng)過A1到達A2的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列世界博覽會會徽圖案中是軸對稱圖形的是(    )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,長方形紙片ABCD中,AB=8cm,AD=6cm,按下列步驟進行裁剪和拼圖:

第一步:如圖①,在線段AD上任意取一點E,沿EB,EC剪下一個三角形紙片EBC(余下部分不再使用);
第二步:如圖②,沿三角形EBC的中位線GH將紙片剪成兩部分,并在線段GH上任意取一點M,線段BC上任意取一點N,沿MN將梯形紙片GBCH剪成兩部分;
第三步:如圖③,將MN左側紙片繞G點按順時針方向旋轉180°,使線段GB與GE重合,將MN右側紙片繞H點按逆時針方向旋轉180°,使線段HC與HE重合,拼成一個與三角形紙片EBC面積相等的四邊形紙片.
(注:裁剪和拼圖過程均無縫且不重疊)
則拼成的這個四邊形紙片的周長的最小值為________cm,最大值為________cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在如圖所示的平面直角坐標系中,已知點A(2,4),B(4,2).

小題1:在第一象限內(nèi)求作△ABC,使得C(1,1);
小題2:△ABC的面積是                    ;
小題3:請以原點為旋轉中心,將△ABC逆時針旋轉90°得到△A’B’C’
小題4:請?zhí)骄浚涸谧鴺溯S是否存在點P,使以點A’、B’、P為頂點的三角形的面積等于△ABC的面積,若存在,請直接寫出點P的坐標(不必寫出解答過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在Rt△ABC中,∠ABC=90°,∠ACB=30°,將△ABC繞點A按逆時針方向旋轉15°后得到△AB1C1,B1C1交AC于點D,如果AD=,則△ABC的周長等于         .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△ABC中∠A=30°,E是AC邊上的點,先將△ABE沿著BE翻折,翻折后△ABE的AB邊交AC于點D,又將△BCD沿著BD翻折,C點恰好落在BE上,此時∠CDB=82°,則原三角形的∠B =_______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,邊長為1的正方形ABCD繞點A逆時針旋轉45°后得到正方形AB1C1D1,邊B1C1CD交于點O,則四邊形AB1OD 的周長是(   )
 
A.2B.3C.D.1+

查看答案和解析>>

同步練習冊答案