(2013•江北區(qū)模擬)已知數(shù)軸上A,B兩點對應(yīng)的數(shù)分別是-5,6,⊙A的半徑為5cm,⊙B的半徑為7cm.⊙A以每秒1cm的速度在數(shù)軸上沿正方向運動,⊙B固定不動.當(dāng)兩圓相切時,點A運動的時間為
9,13,23
9,13,23
秒.
分析:本題所說的兩圓相切,應(yīng)分為兩圓第一次相遇時的相切和兩圓繼續(xù)移動,即將相離時的相切兩種情況,根據(jù)路程=速度×?xí)r間分別求解.
解答:解:本題所說的兩圓相切,應(yīng)分為兩圓第一次相遇時的相切和兩圓繼續(xù)移動,即將相離時的相切兩種情況.
第一次兩圓內(nèi)切時,點A所走的路程為9cm;
第二次兩圓內(nèi)切時,點A所走的路程為13cm.
第一次兩圓外切時,點A所走的路程為23cm;
∵.⊙A以每秒1cm的速度在數(shù)軸上沿正方向運動,
∴時間為:9,13,23秒,
故答案為:9,13,23.
點評:本題主要考查圓與圓的位置關(guān)系的知識點,本題有兩種情況,學(xué)生通常只考慮到其中的一種情況,是一道易錯題,本題將圓的有關(guān)知識和相遇問題有機(jī)的結(jié)合在了一起,是一道很好的綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•江北區(qū)模擬)點A(2,y1)、B(3,y2)是二次函數(shù)y=x2-2x+2013的圖象上兩點,則y1與y2的大小關(guān)系為y1
y2(填“>”、“<”、“=”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•江北區(qū)模擬)如圖,在平面直角坐標(biāo)系中,梯形AOBC的邊OB在x軸的正半軸上,AC∥OB,BC⊥OB,過點A的雙曲線y=
k
x
的一支在第一象限交梯形對角線OC于點D,交邊BC于點E.若
OD
OC
=
1
2
,S△OAC=2,則k的值為
4
3
4
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•江北區(qū)模擬)如果一條直線把一個平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個平面圖形的一條面積等分線.
(1)矩形有
無數(shù)
無數(shù)
條面積等分線;
(2)如圖①,在矩形中剪去一個小正方形,這個圖形有
無數(shù)
無數(shù)
條面積等分線,請畫出這個圖形的一條面積等分線,并說明理由;
(3)如圖②,在矩形中剪去兩個小正方形,請畫出這個圖形的一條面積等分線,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•江北區(qū)模擬)在平面直角坐標(biāo)系中,O是坐標(biāo)原點,直角梯形AOCD的頂點A的坐標(biāo)為(0,
3
),點D的坐標(biāo)為(1,
3
),點C在x軸的正半軸上,過點O且以點D為頂點的拋物線經(jīng)過點C,點P為CD的中點.
(1)求拋物線的解析式及點P的坐標(biāo);
(2)在y軸右側(cè)的拋物線上是否存在點Q,使以Q為圓心的圓同時與y軸、直線OP相切?若存在,請求出滿足條件的點Q的坐標(biāo);若不存在,請說明理由;
(3)點M為線段OP上一動點(不與O點重合),過點O、M、D的圓與y軸的正半軸交于點N.求證:OM+ON為定值.
(4)在y軸上找一點H,使∠PHD最大.試求出點H的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案