【題目】如圖,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.
(1)求DE的長;
(2)求△ADB的面積.
【答案】
(1)解:∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴CD=DE,
∵CD=3,
∴DE=3;
(2)解:在Rt△ABC中,由勾股定理得:AB= = =10,
∴△ADB的面積為S△ADB= ABDE= ×10×3=15
【解析】(1)根據(jù)角平分線性質(zhì):角平分線上的點到角兩邊的距離相等,得出CD=DE,代入求出即可;
(2)利用勾股定理求出AB的長,然后根據(jù)三角形的面積公式計算△ADB的面積.
【考點精析】根據(jù)題目的已知條件,利用角平分線的性質(zhì)定理和勾股定理的概念的相關(guān)知識可以得到問題的答案,需要掌握定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,給出下列結(jié)論:①abc>0;②a﹣b+c<0;③2a+b﹣c<0;④4a+2b+c>0,⑤若點(﹣ ,y1)和( ,y2)在該圖象上,則y1>y2.其中正確的結(jié)論是_____(填入正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】分解因式4x2﹣16y2的結(jié)果是( )
A.(2x﹣4y)2
B.(2x﹣4y)(2x+4y)
C.4(x2﹣4y2)
D.4(x﹣2y)(x+2y)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,⊙P經(jīng)過y軸上一點C,與x軸分別相交于A、B兩點,連接BP并延長分別交⊙P、y軸于點D、E,連接DC并延長交x軸于點F.若點F的坐標為(﹣1,0),點D的坐標為(1,6).
(1)求證:CD=CF;
(2)判斷⊙P與y軸的位置關(guān)系,并說明理由;
(3)求直線BD的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各式,屬于二元一次方程的個數(shù)有( )
①xy+2x-y=7; ②4x+1=x-y; ③+y=5; ④x=y; ⑤x2-y2=2
⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+x
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com