【題目】如圖,從△ABC各頂點作平行線AD∥EB∥FC,各與其對邊或其延長線相交于D,E,F.若△ABC的面積為1,則△DEF的面積為( )
A.3B.C.D.2
【答案】D
【解析】
根據(jù)平行線間的距離處處相等得到:△ADE和△ABD在底邊AD上的高相等,△ADF和△ADC在底邊AD上的高相等,△BEF和△BEC在底邊BE上的高相等,所以由三角形的面積公式和圖形間的面積的數(shù)量關系進行證明即可.
證明:∵AD∥BE,AD∥FC,FC∥BE,
∴△ADE和△ABD在底邊AD上的高相等,△ADF和△ADC在底邊AD上的高相等,△BEF和△BEC在底邊BE上的高相等,
∴S△ADF=S△ADC,S△BEF=S△BEC,S△AEF=S△BEF﹣S△ABE=S△BEC﹣S△ABE=S△ABC
∴S△DEF=S△ADE+S△ADF+S△AEF=S△ABD+S△ADC+S△ABC=2S△ABC.
即S△DEF=2S△ABC.
∵S△ABC=1,
∴S△DEF=2,
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以的邊上一點為圓心的圓,經(jīng)過、兩點,且與邊交于點,為的下半圓弧的中點,連接交于,若.
(1)求證:是的切線;
(2)若,,求的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AC、BD交于點O,BD=8,AC=4,DP∥AC,CP∥BD.
(1)求線段OP的長;
(2)不添加任何輔助線的情況下,直接寫出圖中所有的平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課堂上,蔣老師拿出了4張分別與有數(shù)字1,2,3,4的卡片(除數(shù)字外其他都相同),讓同學們隨機抽取兩張,并計算這兩張卡片上數(shù)字的和.
(1)請用列表或畫樹狀圖的方法列舉出所有等可能的結果;
(2)求兩張卡片上數(shù)字的和大于5的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示:兩個同心圓,半徑分別是和,矩形ABCD邊AB,CD分別為兩圓的弦,當矩形ABCD面積取最大值時,矩形ABCD的周長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論:①c<0;②2a+b=0;③a+b+c<0;④b2﹣4ac<0,其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解學生對“第二十屆中國哈爾濱冰雪大世界”主題景觀的了解情況,在全體學生中隨機抽取了部分學生進行調(diào)查,并把調(diào)查結果繪制成如圖的不完整的兩幅統(tǒng)計圖:
(1)本次調(diào)查共抽取了多少名學生;
(2)通過計算補全條形圖;
(3)若該學校共有名學生,請你估計該學校選擇“比較了解”項目的學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正△ABC 的邊長為 2,頂點 B、C 在半徑為 的圓上,頂點 A在圓內(nèi),將正△ABC 繞點 B 逆時針旋轉,當點 A 第一次落在圓上時,則點 C 運動的路線長為 (結果保留π);若 A 點落在圓上記做第 1 次旋轉,將△ABC 繞點 A 逆時針旋轉,當點 C 第一次落在圓上記做第 2 次旋轉,再繞 C 將△ABC 逆時針旋轉,當點 B 第一次落在圓上,記做第 3 次旋轉……,若此旋轉下去,當△ABC 完成第 2017 次旋轉時,BC 邊共回到原來位置 次.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com