【題目】如圖,菱形頂點在函數(shù)的圖象上,函數(shù)的圖象關(guān)于直線對稱,且經(jīng)過點,兩點,若,,則的值為________.
【答案】
【解析】
連接OC,AC過A作AE⊥x軸于點E,延長DA與x軸交于點F,過點D作DG⊥x軸于點G,得O、A、C在第一象限的角平分線上,求得A點坐標,進而求得D點坐標,便可求得結(jié)果.
解:連接OC,AC過A作AE⊥x軸于點E,延長DA與x軸交于點F,過點D作DG⊥x軸于點G,
∵函數(shù)y=(k>12,x>0)的圖象關(guān)于直線AC對稱,
∴O、A、C三點在同一直線上,且∠COE=45°,
∴OE=AE,
不妨設(shè)OE=AE=a,則A(a,a),
∵點A在在反比例函數(shù)y=(x>0)的圖象上,
∴a2=12,
∴a=,
∴AE=OE=,
∵∠BAD=30°,
∴∠OAF=∠CAD=∠BAD=15°,
∵∠OAE=∠AOE=45°,
∴∠EAF=30°,
∴AF==4,EF=AEtan30°=2,
∵AB=AD=2,AE∥DG,
∴EF=EG=2,DG=2AE=4,
∴OG=OE+EG=2+2,
∴D(2+2,4),
∴k=
故答案為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,ΔECG是等腰直角三角形,∠BGE的平分線過點D交BE 于H,O是EG的中點,對于下面四個結(jié)論:①GH⊥BE;②OH∥BG,且;③;④△EBG的外接圓圓心和它的內(nèi)切圓圓心都在直線HG上.其中表述正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市教育行政部門為了解初中學生參加綜合實踐活動的情況,隨機抽取了本市初一、初二、初三年級各名學生進行了調(diào)查,調(diào)查結(jié)果如圖所示,請你根據(jù)圖中的信息回答問題.
(1)在被調(diào)查的學生中,參加綜合實踐活動的有多少人,參加科技活動的有多少人;
(2)如果本市有萬名初中學生,請你估計參加科技活動的學生約有多少名.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC邊上的一個動點,連接AD,過點C作CE⊥AD于E,連接BE,在點D變化的過程中,線段BE的最小值是__cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:在平面直角坐標系中,將點P繞點T(t,0)(t>0)旋轉(zhuǎn)180°得到點Q,則稱點Q為點P的“發(fā)展點”.
(1)當t=3時,點(0,0)的“發(fā)展點”坐標為 ,點(﹣1,﹣1)的“發(fā)展點”坐標為 .
(2)若t>2,則點(2,3)的“發(fā)展點”的橫坐標為 (用含t的代數(shù)式表示 ).
(3)若點P在直線y=2x+6上,其“發(fā)展點”Q在直線y=2x﹣8上,求點T的坐標.
(4)點P(2,2)在拋物線y=﹣x2+k上,點M在這條拋物線上,點Q為點P的“發(fā)展點”,若△PMQ是以點M為直角頂點的等腰直角三角形,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】菱形ABCD在坐標平面內(nèi)的位置如圖所示,已知A(-1,5),D(-2,2),對角線交點M(-3,3),如果雙曲線(x<0)與菱形ABCD有公共點,那么k的取值范圍是________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,銳角△ABC中,D、E分別是AB、BC的中點,F是AC上的點,且∠AFE=∠A,DM//EF交AC于點M.
(1)求證:DM=DA;
(2)點G在BE上,且∠BDG=∠C,如圖2,
① 求證:△DEG∽△ECF;
② 從線段CE上取一點H,連接FH使∠CFH=∠B,若BG=1,求EH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,E為對角線AC上一點,連接DE,作EF⊥DE,交AD于點F,G為AD邊上一點,且AB=AG,連接GE.
(1)如圖1,若點G為DF的中點,AF=2,EG=4,∠B=60°,求AC的長;
(2)如圖2,連接CG交DE于點H,若EG∥CD,∠ACB=∠DCG,求證:∠ECG=2∠AEF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD、等腰Rt△BPQ的頂點P在對角線AC上(點P與A、C不重合),QP與BC交于E,QP延長線與AD交于點F,連接CQ.
(1)①求證:AP=CQ;②求證:PA2=AFAD;
(2)若AP:PC=1:3,求tan∠CBQ.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com