【題目】我們不妨約定:如圖①,若點(diǎn)D在△ABC的邊AB上,且滿足∠ACD=∠B(或∠BCD=∠A),則稱滿足這樣條件的點(diǎn)為△ABC邊AB上的“理想點(diǎn)”.
(1)如圖①,若點(diǎn)D是△ABC的邊AB的中點(diǎn),AC=,AB=4.試判斷點(diǎn)D是不是△ABC邊AB上的“理想點(diǎn)”,并說(shuō)明理由.
(2)如圖②,在⊙O中,AB為直徑,且AB=5,AC=4.若點(diǎn)D是△ABC邊AB上的“理想點(diǎn)”,求CD的長(zhǎng).
(3)如圖③,已知平面直角坐標(biāo)系中,點(diǎn)A(0,2),B(0,-3),C為x軸正半軸上一點(diǎn),且滿足∠ACB=45°,在y軸上是否存在一點(diǎn)D,使點(diǎn)A是B,C,D三點(diǎn)圍成的三角形的“理想點(diǎn)”,若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)是,理由見(jiàn)解析;(2);(3)D(0,42)或D(0,6)
【解析】
(1)依據(jù)邊長(zhǎng)AC=,AB=4,D是邊AB的中點(diǎn),得到AC2=,可得到兩個(gè)三角形相似,從而得到∠ACD=∠B;
(2)由點(diǎn)D是△ABC的“理想點(diǎn)”,得到∠ACD=∠B或∠BCD=∠A,分兩種情況證明均得到CD⊥AB,再根據(jù)面積法求出CD的長(zhǎng);
(3)使點(diǎn)A是B,C,D三點(diǎn)圍成的三角形的“理想點(diǎn)”,應(yīng)分兩種情況討論,利用三角形相似分別求出點(diǎn)D的坐標(biāo)即可.
(1)D是△ABC邊AB上的“理想點(diǎn)”,理由:
∵AB=4,點(diǎn)D是△ABC的邊AB的中點(diǎn),
∴AD=2,
∵AC2=8,,
∴AC2=,
又∵∠A=∠A,
∴△ADC∽△ACB,
∴∠ACD=∠B,
∴D是△ABC邊AB上的“理想點(diǎn)”.
(2)如圖②,
∵點(diǎn)D是△ABC的“理想點(diǎn)”,
∴∠ACD=∠B或∠BCD=∠A,
當(dāng)∠ACD=∠B時(shí),
∵∠ACD+∠BCD=90,
∴∠BCD+∠B=90,
∴∠CDB=90,
當(dāng)∠BCD=∠A時(shí),同理可得CD⊥AB,
在Rt△ABC中,∵∠ACB=90,AB=5,AC=4,
∴BC==3,
∵,
∴,
∴.
(3)如圖③,存在.
過(guò)點(diǎn)A作MA⊥AC交CB的延長(zhǎng)線于點(diǎn)M,∵∠MAC=∠AOC=90,∠ACM=45,
∴∠AMC=∠ACM=45,
∴AM=AC,
∵∠MAH+∠CAO=90,∠CAO+∠ACO=90,
∴∠MAH=∠ACO,
∴△AHM≌△COA
∴MH=OA,OC=AH,
設(shè)C(a,0),
∵A(0,2),B(0,-3),
∴OA=MH=2,OB=3,AB=5,OC=AH=a,BH=a-5,
∵MH∥OC,
∴,
∴,
解得a=6或a=-1(舍去),
經(jīng)檢驗(yàn)a=6是原分式方程的解,
∴C(6,0),OC=6.
①當(dāng)∠D1CA=∠ABC時(shí),點(diǎn)A是△BCD1的“理想點(diǎn)”,
設(shè)D1(0,m),
∵∠D1CA=∠ABC,∠CD1A=∠CD1B,
∴△D1AC∽△D1CB,
∴,
∴,
解得m=42,∴D1(0,42);
②當(dāng)∠BCA=∠CD2B時(shí),點(diǎn)A是△BCD2“理想點(diǎn)”,
可知:∠CD2O=45,
∴OD2=OC=6,
∴D2(0,6).
綜上,滿足條件的點(diǎn)D的坐標(biāo)為D(0,42)或D(0,6).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把大小和形狀完全相同的6張卡片分成兩組,每組3張,分別標(biāo)上1、2、3,將這兩組卡片分別放入兩個(gè)盒子中攪勻,再?gòu)闹须S機(jī)抽取一張.
(1)試求取出的兩張卡片數(shù)字之和為奇數(shù)的概率;
(2)若取出的兩張卡片數(shù)字之和為奇數(shù),則甲勝;取出的兩張卡片數(shù)字之和為偶數(shù),則乙勝;試分析這個(gè)游戲是否公平?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B的坐標(biāo)分別為(0,8),(10,0),動(dòng)點(diǎn)C,D分別在OA,OB上且CD=8,以CD為直徑作⊙P交AB于點(diǎn)E,F.動(dòng)點(diǎn)C從點(diǎn)O向終點(diǎn)A的運(yùn)動(dòng)過(guò)程中,線段EF長(zhǎng)的變化情況為( 。
A.一直不變B.一直變大
C.先變小再變大D.先變大再變小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD=2,AB=,以點(diǎn)A為圓心,AD為半徑的圓與BC相切于點(diǎn)E,交AB于點(diǎn)F.
(1)求∠ABE的大小及的長(zhǎng)度;
(2)在BE的延長(zhǎng)線上取一點(diǎn)G,使得上的一個(gè)動(dòng)點(diǎn)P到點(diǎn)G的最短距離為,求BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y = ax2+bx-3經(jīng)過(guò)A、B、C三點(diǎn),己知點(diǎn)A(-3,0)、C (1, 0).
(1)求此拋物線的解析式.
(2)點(diǎn)P是直線AB下方的拋物線上一動(dòng)點(diǎn)(不與A、B重合),
①過(guò)點(diǎn)F作x軸的垂線,垂足為D,交直線AB于點(diǎn)E,動(dòng)點(diǎn)P在什么位置時(shí),PE最大,求 出此時(shí)P點(diǎn)的坐標(biāo).
②如圖2,連接AP.以AP為邊作圖示一側(cè)的正方形APMN,當(dāng)它恰好有一個(gè)頂點(diǎn)落在拋物 線對(duì)稱軸上時(shí),求出對(duì)應(yīng)的P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,賓館大廳的天花板上掛有一盞吊燈AB,某人從C點(diǎn)測(cè)得吊燈頂端A的仰角為,吊燈底端B的仰角為,從C點(diǎn)沿水平方向前進(jìn)6米到達(dá)點(diǎn)D,測(cè)得吊燈底端B的仰角為.請(qǐng)根據(jù)以上數(shù)據(jù)求出吊燈AB的長(zhǎng)度.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)課上,老師提出如下問(wèn)題:
如圖,已知線段AB,BC,∠ABC = 90°. 求作:矩形ABCD.
小明的作圖過(guò)程如下:
(1)連接AC,作線段AC的垂直平分線,交AC于M;
(2)連接BM并延長(zhǎng),在延長(zhǎng)線上取一點(diǎn)D,使MD=MB,連接AD,CD.
∴四邊形ABCD即為所求.
老師說(shuō):“小明的作法正確.”
請(qǐng)回答:小明這樣作圖的依據(jù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)不僅是一門學(xué)科,也是一種文化,即數(shù)學(xué)文化.數(shù)學(xué)文化包括數(shù)學(xué)史、數(shù)學(xué)美和數(shù)學(xué)應(yīng)用等多方面.古時(shí)候,在某個(gè)王國(guó)里有一位聰明的大臣,他發(fā)明了國(guó)際象棋,獻(xiàn)給了國(guó)王,國(guó)王從此迷上了下棋,為了對(duì)聰明的大臣表示感謝,國(guó)王答應(yīng)滿足這位大臣的一個(gè)要求.大臣說(shuō):“就在這個(gè)棋盤上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、粒······一只到第格.”“你真傻!就要這么一點(diǎn)米粒?”國(guó)王哈哈大笑.大臣說(shuō):“就怕您的國(guó)庫(kù)里沒(méi)有這么多米!”國(guó)王的國(guó)庫(kù)里真沒(méi)有這么多米嗎?題中問(wèn)題就是求是多少?請(qǐng)同學(xué)們閱讀以下解答過(guò)程就知道答案了.
設(shè),
則
即:
事實(shí)上,按照這位大臣的要求,放滿一個(gè)棋盤上的個(gè)格子需要粒米.那么到底多大呢?借助計(jì)算機(jī)中的計(jì)算器進(jìn)行計(jì)算,可知答案是一個(gè)位數(shù): ,這是一個(gè)非常大的數(shù),所以國(guó)王是不能滿足大臣的要求.請(qǐng)用你學(xué)到的方法解決以下問(wèn)題:
我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座層塔共掛了盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的倍,則塔的頂層共有多少盞燈?
計(jì)算:
某中學(xué)“數(shù)學(xué)社團(tuán)”開(kāi)發(fā)了一款應(yīng)用軟件,推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問(wèn)題的答案:
已知一列數(shù):,其中第一項(xiàng)是,接下來(lái)的兩項(xiàng)是,再接下來(lái)的三項(xiàng)是,以此類推,求滿足如下條件的所有正整數(shù),且這一數(shù)列前項(xiàng)和為的正整數(shù)冪.請(qǐng)直接寫出所有滿足條件的軟件激活碼正整數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一個(gè)直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上點(diǎn),連接EF.
(1)圖①,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在AB邊上的點(diǎn)D處,且使S四邊形ECBF=3S△EDF,求AE的長(zhǎng);
(2)如圖②,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在BC邊上的點(diǎn)M處,且使MF∥CA.
①試判斷四邊形AEMF的形狀,并證明你的結(jié)論;
②求EF的長(zhǎng);
(3)如圖③,若FE的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)N,CN=1,CE=,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com