【題目】在數(shù)學課上,老師提出如下問題:
如圖,已知線段AB,BC,∠ABC = 90°. 求作:矩形ABCD.
小明的作圖過程如下:
(1)連接AC,作線段AC的垂直平分線,交AC于M;
(2)連接BM并延長,在延長線上取一點D,使MD=MB,連接AD,CD.
∴四邊形ABCD即為所求.
老師說:“小明的作法正確.”
請回答:小明這樣作圖的依據(jù)是______.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D是斜邊AB的中點,過點B、點C分別作BE∥CD,CE∥BD.
(1)求證:四邊形BECD是菱形;
(2)若∠A=60°,AC=,求菱形BECD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1) 請畫出△ABC向左平移5個單位長度后得到的△ABC;
(2) 請畫出△ABC關(guān)于原點對稱的△ABC;
(3) 在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們不妨約定:如圖①,若點D在△ABC的邊AB上,且滿足∠ACD=∠B(或∠BCD=∠A),則稱滿足這樣條件的點為△ABC邊AB上的“理想點”.
(1)如圖①,若點D是△ABC的邊AB的中點,AC=,AB=4.試判斷點D是不是△ABC邊AB上的“理想點”,并說明理由.
(2)如圖②,在⊙O中,AB為直徑,且AB=5,AC=4.若點D是△ABC邊AB上的“理想點”,求CD的長.
(3)如圖③,已知平面直角坐標系中,點A(0,2),B(0,-3),C為x軸正半軸上一點,且滿足∠ACB=45°,在y軸上是否存在一點D,使點A是B,C,D三點圍成的三角形的“理想點”,若存在,請求出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以AB邊為直徑的⊙O經(jīng)過點P,C是⊙O上一點,連結(jié)PC交AB于點E,且∠ACP=60°,PA=PD.
(1)試判斷PD與⊙O的位置關(guān)系,并說明理由;
(2)若點C是弧AB的中點,已知AB=4,求CECP的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究
如圖,拋物線y=-x2+bx+c與x軸交于A(-1,0),B兩點,與y軸交于點C,對稱軸為x=1.
(1)求拋物線的函數(shù)表達式;
(2)在拋物線的對稱軸上求一點P,使點P到點A的距離與到點C的距離之和最小,并求出此時點P的坐標;
(3)是否存在過A,B兩點的拋物線,其頂點M關(guān)于x軸的對稱點為N,使得四邊形AMBN為正方形?若存在,請直接寫出此拋物線的函數(shù)表達式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年10月21日,重慶市第八屆中小學藝術(shù)工作坊在渝北區(qū)空港新城小學體育館開幕,來自全重慶市各個區(qū)縣共二十多個工作坊集中展示了自己的藝術(shù)特色.組委會準備為現(xiàn)場展示的參賽選手購買三種紀念品,其中甲紀念品5元/件,乙紀念品7元/件,丙紀念品10元/件.要求購買乙紀念品數(shù)量是丙紀念品數(shù)量的2倍,總費用為346元.若使購買的紀念品總數(shù)最多,則應(yīng)購買紀念品共_____件.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a<0<b)的圖像與x軸只有一個交點,下列結(jié)論:①x<0時,y隨x增大而增大;②a+b+c<0;③關(guān)于x的方程ax2+bx+c+2=0有兩個不相等的實數(shù)根.其中所有正確結(jié)論的序號是( )
A.①②B.②③C.①③D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PA,PB,AB,已知∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com