【題目】某學(xué)校舉辦一項小制作評比活動,對初一年級6個班的作品件數(shù)進行統(tǒng)計,繪制成如圖所示的統(tǒng)計圖.已知從左到右各矩形的高度比為2:3:4:6:4:1,其中三班的件數(shù)是8.
請你回答:
(1)本次活動共有件作品參賽;
(2)經(jīng)評比,四班和六班分別有10件和2件作品獲獎,那么你認為這兩個班中哪個班獲獎率較高?為什么?
(3)小制作評比結(jié)束后,組委會評出了4件優(yōu)秀作品A、B、C、D.現(xiàn)決定從這4件作品中隨機選出兩件進行全校展示,請用樹狀圖或列表法求出剛好展示作品B、D的概率.

【答案】
(1)40
(2)解:∵四班有作品:40× =12(件),六班有作品:40× =2(件),

∴四班的獲獎率為: = ,六班的獲獎率為:1;

<1,

∴六班的獲獎率較高


(3)解:畫樹狀圖如下:

∵由樹狀圖可知,所有等可能的結(jié)果為12種,其中剛好是(B,D)的有2種,

∴剛好展示作品B、D的概率為:P= =


【解析】解:(1)根據(jù)題意得:8÷ =40(件); 答:本次活動共有40件作品參賽;
故答案為:40;(1)由題意得:本次活動共有參賽作品:8÷ ;(2)由(1)可求得四班和六班的作品,然后求得獲獎率,即可求得答案;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與剛好展示作品B、D的情況,再利用概率公式即可求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DE∥BC,且過△ABC的重心,分別與AB,AC交于點D,E,點P是線段DE上一點,CP的延長線交AB于點Q,如果 = ,那么SDPQ:SCPE的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,⊙A切y軸于點B,且點A在反比例函數(shù)y= (x>0)的圖象上,連接OA交⊙A于點C,且點C為OA中點,則圖中陰影部分的面積為(
A.4
B.4
C.2
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB是⊙O的切線,A、B是切點,點C是劣弧AB上的一個動點,若∠ACB=110°,則∠P的度數(shù)是(
A.55°
B.30°
C.35°
D.40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅認為:當b2﹣4ac≥0時,一元二次方程ax2+bx+c=0(a≠0)的求根公式是 .請你舉出反例說明小紅的結(jié)論是錯誤的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)y=x2+mx的對稱軸是x=3,則關(guān)于x的方程x2+mx=7的解為( 。
A.x1=0,x2=6
B.x1=1,x2=7
C.x1=1,x2=﹣7
D.x1=﹣1,x2=7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為原點,菱形OABC的對角線OB在x軸上,頂點A在反比例函數(shù)y= 的圖像上,則菱形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,對于點P(x,y),若點Q的坐標為(x,|x﹣y|),則稱點Q為點P的“關(guān)聯(lián)點”.
(1)請直接寫出點(2,2)的“關(guān)聯(lián)點”的坐標;
(2)如果點P在函數(shù)y=x﹣1的圖像上,其“關(guān)聯(lián)點”Q與點P重合,求點P的坐標;
(3)如果點M(m,n)的“關(guān)聯(lián)點”N在函數(shù)y=x2的圖像上,當0≤m≤2時,求線段MN的最大值.

查看答案和解析>>

同步練習(xí)冊答案