【題目】如圖,點(diǎn)A,B,C表示某旅游景區(qū)三個(gè)纜車站的位置,線段AB,BC表示連接纜車站的鋼纜,已知A,B,C三點(diǎn)在同一鉛直平面內(nèi),它們的海拔高度AA′,BB′,CC′分別為110米,310米,710米,鋼纜AB的坡度i1=1∶2,鋼纜BC的坡度i2=1∶1,景區(qū)因改造纜車線路,需要從A到C直線架設(shè)一條鋼纜,那么鋼纜AC的長度是多少米?(注:坡度i是指坡面的鉛直高度與水平寬度的比)
【答案】鋼纜AC的長度為1 000米.
【解析】試題分析:過點(diǎn)A作AE⊥CC′于點(diǎn)E,交BB′于點(diǎn)F,過點(diǎn)B作BD⊥CC′于點(diǎn)D,分別求出AE、CE,利用勾股定理求解AC即可.
試題解析:過點(diǎn)A作AE⊥CC′于點(diǎn)E,交BB′于點(diǎn)F,過點(diǎn)B作BD⊥CC′于點(diǎn)D,
則△AFB、△BDC、△AEC都是直角三角形,四邊形AA′B′F,BB′C′D和BFED都是矩形,
∴BF=BB′-B′F=BB′-AA′=310-110=200,
CD=CC′-C′D=CC′-BB′=710-310=400,
∵i1=1:2,i2=1:1,
∴AF=2BF=400,BD=CD=400,
又∵EF=BD=400,DE=BF=200,
∴AE=AF+EF=800,CE=CD+DE=600,
∴在Rt△AEC中,AC=(米).
答:鋼纜AC的長度是1000米.
考點(diǎn):解直角三角形的應(yīng)用-坡度坡角問題.
【題型】解答題
【結(jié)束】
24
【題目】如圖①,AB為半圓的直徑,O為圓心,C為圓弧上一點(diǎn),AD垂直于過C點(diǎn)的切線,垂足為D,AB的延長線交直線CD于點(diǎn)E.
(1)求證:AC平分∠DAB;
(2)若AB=4,B為OE的中點(diǎn),CF⊥AB,垂足為點(diǎn)F,求CF的長;
(3)如圖②,連接OD交AC于點(diǎn)G,若,求sinE的值.
【答案】(1)證明見解析;(2)CF=;(3) sinE=.
【解析】分析:(1)連接OC,由平行線的判定定理、性質(zhì)以及三角形中的等角對等邊的原理即可求證。(2)由(1)中結(jié)論,利用特殊角的三角函數(shù)值可求出∠E=30和CF的長度。(3)連接OC,即可證得△OCG∽△DAG,△OCE∽△DAE,根據(jù)相似三角形的對應(yīng)邊成比例,可得EO與AO的比例關(guān)系,又因?yàn)?/span>OC=OA,所以在RT△OCE中由三角函數(shù)的定義即可求解。
本題解析:(1)連接OC,如圖①.∵OC切半圓O于C,∴OC⊥DC,又AD⊥CD.∴OC∥AD.∴∠OCA=∠DAC.∵OC=OA,∴∠OAC=∠ACO.∴∠DAC=∠CAO,即AC平分∠DAB.
(2)在Rt△OCE中,∵OC=OB=OE,∴∠E=30°.
∴在Rt△OCF中,CF=OC·sin60°=2×=.
(3)連接OC,如圖②.∵CO∥AD,∴△CGO∽△AGD.∴==.不妨設(shè)CO=AO=3k,則AD=4k.又△COE∽△DAE,∴===.∴EO=9k.在Rt△COE中,sinE===.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年10月,某公司隨機(jī)抽取所屬的a家連鎖店進(jìn)行評估,將各連鎖店按照評估成績分成了A、B、C、D四個(gè)等級,繪制了如圖尚不完整的統(tǒng)計(jì)圖表.
根據(jù)以上信息解答下列問題:
(1)求a的值;
(2)在扇形統(tǒng)計(jì)圖中,求B等級所在扇形的圓心角的大小;(結(jié)果用度、分、秒表示)
(3)從評估成績不少于80分的連鎖店中任選2家介紹營銷經(jīng)驗(yàn),求其中至少有一家是A等級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,兩個(gè)建筑物AB和CD的水平距離為30m,張明同學(xué)住在建筑物AB內(nèi)10樓P室,他觀測建筑物CD樓的頂部D處的仰角為30°,測得底部C處的俯角為45°,求建筑物CD的高度.(取1.73,結(jié)果保留整數(shù).)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D為射線CB上一點(diǎn),且不與點(diǎn)B、C重合,DE∥AB交直線AC于點(diǎn)E,DF∥AC交直線AB于點(diǎn)F.畫出符合題意的圖形,猜想∠EDF與∠BAC的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(m,-2).
(1)求△AHO的周長;
(2)求該反比例函數(shù)和一次函數(shù)的解析式.
【答案】(1)△AHO的周長為12;(2) 反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=-x+1.
【解析】試題分析: (1)根據(jù)正切函數(shù),可得AH的長,根據(jù)勾股定理,可得AO的長,根據(jù)三角形的周長,可得答案;
(2)根據(jù)待定系數(shù)法,可得函數(shù)解析式.
試題解析:(1)由OH=3,tan∠AOH=,得
AH=4.即A(-4,3).
由勾股定理,得
AO==5,
△AHO的周長=AO+AH+OH=3+4+5=12;
(2)將A點(diǎn)坐標(biāo)代入y=(k≠0),得
k=-4×3=-12,
反比例函數(shù)的解析式為y=;
當(dāng)y=-2時(shí),-2=,解得x=6,即B(6,-2).
將A、B點(diǎn)坐標(biāo)代入y=ax+b,得
,
解得,
一次函數(shù)的解析式為y=-x+1.
考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.
【題型】解答題
【結(jié)束】
23
【題目】如圖,點(diǎn)A,B,C表示某旅游景區(qū)三個(gè)纜車站的位置,線段AB,BC表示連接纜車站的鋼纜,已知A,B,C三點(diǎn)在同一鉛直平面內(nèi),它們的海拔高度AA′,BB′,CC′分別為110米,310米,710米,鋼纜AB的坡度i1=1∶2,鋼纜BC的坡度i2=1∶1,景區(qū)因改造纜車線路,需要從A到C直線架設(shè)一條鋼纜,那么鋼纜AC的長度是多少米?(注:坡度i是指坡面的鉛直高度與水平寬度的比)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.
(1)若某反比例函數(shù)的圖象的一個(gè)分支恰好經(jīng)過點(diǎn)A,求這個(gè)反比例函數(shù)的解析式;
(2)若把含30°角的直角三角板繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)后,斜邊OA恰好落在x軸上,點(diǎn)A落在點(diǎn)A′處,試求圖中陰影部分的面積.(結(jié)果保留π)
【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.
【解析】分析:(1)根據(jù)tan30°=,求出AB,進(jìn)而求出OA,得出A的坐標(biāo),設(shè)過A的雙曲線的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.
本題解析:
(1)在Rt△OBA中,∠AOB=30°,OB=3,
∴AB=OB·tan 30°=3.
∴點(diǎn)A的坐標(biāo)為(3,3).
設(shè)反比例函數(shù)的解析式為y= (k≠0),
∴3=,∴k=9,則這個(gè)反比例函數(shù)的解析式為y=.
(2)在Rt△OBA中,∠AOB=30°,AB=3,
sin ∠AOB=,即sin 30°=,
∴OA=6.
由題意得:∠AOC=60°,S扇形AOA′==6π.
在Rt△OCD中,∠DOC=45°,OC=OB=3,
∴OD=OC·cos 45°=3×=.
∴S△ODC=OD2==.
∴S陰影=S扇形AOA′-S△ODC=6π-.
點(diǎn)睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個(gè)規(guī)則圖形的面積之和是解答本題的關(guān)鍵.
【題型】解答題
【結(jié)束】
26
【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點(diǎn)B落在CD邊上的點(diǎn)P處.
(1)如圖①,已知折痕與邊BC交于點(diǎn)O,連接AP,OP,OA.
① 求證:△OCP∽△PDA;
② 若△OCP與△PDA的面積比為1:4,求邊AB的長.
(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動(dòng)點(diǎn)M在線段AP上(不與點(diǎn)P,A重合),動(dòng)點(diǎn)N在線段AB的延長線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問動(dòng)點(diǎn)M,N在移動(dòng)的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,網(wǎng)格中有一個(gè)格點(diǎn)△ABC(即三角形的頂點(diǎn)都在格點(diǎn)上)
(1)在圖中作出△ABC關(guān)于直線1對稱的△A1B1C1;(要求:A與A1、B與B1、C與C1相對應(yīng));
(2)在第(1)問的結(jié)果下,連結(jié)BB1,CC1,求四邊形BB1C1C的面積;
(3)在圖中作出△ABC關(guān)于點(diǎn)C成中心對稱的△A2CB2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于A(2,3),B(﹣3,n)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b≥的解集;
(3)過點(diǎn)B作BC⊥x軸,垂足為C,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com