【題目】如圖1,拋物線y=x2+bx+c經(jīng)過A(1,0),B(40)兩點,與y軸相交于點C,連接BC,點P為拋物線上一動點,過點Px軸的垂線l,交直線BC于點G,交x軸于點E

(1)求拋物線的解析式;

(2)如圖1,當P位于y軸右邊的拋物線上運動時,過點CCF⊥直線l,F為垂足,當點P運動到何處時,以P,C,F為頂點的三角形與△OBC相似,并直接寫出此時點P的坐標;

(3)如圖2,當點P在位于直線BC上方的拋物線上運動時, 連接PB,PC,設(shè)點P的橫坐標為m, PBC的面積為S

①求出Sm的函數(shù)關(guān)系式;

②求出點P到直線BC的最大距離.

【答案】(1)y=x2+3x+4;(2)P的坐標為 (26)(4,0);(3)S=2m2+8m;②點P到直線BC的最大距離為.

【解析】

1)將點A-1,0),B4,0)的坐標代入拋物線的解析式,求得b、c的值即可;
2)先由函數(shù)解析式求得點C的坐標,從而得到OBC為等腰直角三角形,故此當CF=PF時,以P,C,F為頂點的三角形與OBC相似.設(shè)Pt,-t2+3t+4)(t0),則CF=t,構(gòu)建方程從而可求得t的值,于是可求得點P的坐標;

3)連接EC.設(shè)點P的坐標為(m,﹣m2+3m+4).則OE=m,PE=m2+3m+4,EB=4m

然后依據(jù)SPBC=S四邊形PCEB-SCEB列出PBC的面積與m的函數(shù)關(guān)系式,從而可求得三角形的最大面積,從而求得此時點P坐標,根據(jù)坐標求點P到直線BC的最大距離為.

(1)由題意得 ,解得

∴拋物線的解析式為y=x2+3x+4

(2)P的坐標為 (2,6)(4,0)

(3)如圖2所示:連接EC

設(shè)點P的坐標為(m,﹣m2+3m+4).則OE=m,PE=m2+3m+4EB=4m

C(0,4),B(4,0),

∴直線BC的解析式為y=x+4

S四邊形PCEB=OBPE=×4(m2+3m+4),SCEB=EBOC=×4×(4m),

SPBC=S四邊形PCEBSCEB=2(m2+3m+4)2(4m)=2m2+8m

a=20,

∴當a=2時,PBC的面積S有最大值.

P(2,6)PBC的面積的最大值為8

過點PPHBC于點H,由題意得C0,4),D(4,0),OB=OC=4,

∴∠ABC=45°=EGB,∠PGH=EGB=45°,即PGH是等腰直角三角形,

P(2,6),OE=2=EB=EG,PG=PE-GE=6-2=4,

PH=PG×sin45°=4×=.

即點P到直線BC的最大距離為.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果把一條拋物線繞它的頂點旋轉(zhuǎn)180°得到的拋物線我們稱為原拋物線的孿生拋物線”.

1)求拋物線y=x-2x孿生拋物線的表達式;

2)若拋物線y=x-2x+c的頂點為D,與y軸交于點C,其孿生拋物線y軸交于點,請判斷DCC’的形狀,并說明理由:

3)已知拋物線y=x-2x-3y軸交于點C,與x軸正半軸的交點為A,那么是否在其孿生拋物線上存在點P,在y軸上存在點Q,使以點AC、PQ為頂點的四邊形為平行四邊形,若存在,求出P點的坐標;若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+2mxm2+4

1)求證:該二次函數(shù)的圖象與x軸必有兩個交點;

2)若該二次函數(shù)的圖象與x軸交于點A、B(點A在點B的左側(cè)),頂點為C,

求△ABC的面積;

若點P為該二次函數(shù)圖象上位于A、C之間的一點,則△PAC面積的最大值為   ,此時點P的坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,以為直徑作⊙,分別交、于點、,點的延長線上,且

1)求證:與⊙相切.

2)若,求的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋中裝有4個分別標有數(shù)字﹣1,﹣23,4的小球,它們的形狀、大小完全相同.小紅先從口袋中隨機摸出一個小球記下數(shù)字為x;小穎在剩下的3個小球中隨機摸出一個小球記下數(shù)字為y

(1)小紅摸出標有數(shù)字3的小球的概率是 .

(2)請用樹狀圖或列表法表示出由x,y確定的點P(x,y)所有可能的結(jié)果;

(3)若規(guī)定:點P(x,y)在第一象限或第三象限小紅獲勝;點P(xy)在第二象限或第四象限則小穎獲勝.請分別求出兩人獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系xOy中,O為坐標原點,線段AB的兩個端點的坐標分別為A (0,2),B(﹣1,0),點C為線段AB的中點,現(xiàn)將線段BA繞點B按逆時針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)、經(jīng)過點D.

(1)如圖1,若該拋物線經(jīng)過原點O,且a=﹣1.

求點D的坐標及該拋物線的解析式;

連結(jié)CD,問:在拋物線上是否存在點P,使得∠POB與∠BCD互余?若存在,請求出所有滿足條件的點P的坐標,若不存在,請說明理由.

(2)如圖2,若該拋物線y=ax2+bx+c(a<0)經(jīng)過點E(﹣1,1),點Q在拋物線上,且滿足∠QOB與∠BCD互余,若符合條件的Q點的個數(shù)是4個,請直接寫出a的取值范圍   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC 中,AB=4,D AB 上的一點(不與點 AB 重合),DEBC,交AC 于點 E.設(shè)ABC 的面積為 S,DEC 的面積為 S'.

1)當DAB中點時,求的值;
2)設(shè)AD=x,=y,求yx的函數(shù)表達式,并寫出自變量x的取值范圍;
3)根據(jù)y的范圍,求S-4S′的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的外接圓圓心OAB上,點DBC延長線上一點,DMABM,交ACN,且AC=CDCP是△CDN的邊ND上的中線.

(1)求證:AB=DN;

(2)試判斷CP與⊙O的位置關(guān)系,并證明你的結(jié)論;

(3)PC5,CD8,求線段MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,BC為⊙O的弦,點A為⊙O上一個動點,△OBC的周長為16.過CCDAB交⊙ODBDAC相交于點P,過點PPQAB交于Q,設(shè)∠A的度數(shù)為α

1)如圖1,求∠COB的度數(shù)(用含α的式子表示);

2)如圖2,若∠ABC90°時,AB8,求陰影部分面積(用含α的式子表示);

3)如圖1,當PQ2,求的值.

查看答案和解析>>

同步練習冊答案