【題目】一個(gè)不透明的口袋中裝有4個(gè)分別標(biāo)有數(shù)字﹣1,﹣2,3,4的小球,它們的形狀、大小完全相同.小紅先從口袋中隨機(jī)摸出一個(gè)小球記下數(shù)字為x;小穎在剩下的3個(gè)小球中隨機(jī)摸出一個(gè)小球記下數(shù)字為y.
(1)小紅摸出標(biāo)有數(shù)字3的小球的概率是 .
(2)請(qǐng)用樹狀圖或列表法表示出由x,y確定的點(diǎn)P(x,y)所有可能的結(jié)果;
(3)若規(guī)定:點(diǎn)P(x,y)在第一象限或第三象限小紅獲勝;點(diǎn)P(x,y)在第二象限或第四象限則小穎獲勝.請(qǐng)分別求出兩人獲勝的概率.
【答案】(1);(2)見解析;(3)見解析.
【解析】
(1)直接根據(jù)概率公式求解;
(2)通過列表展示所有12種等可能性的結(jié)果數(shù);
(3)找出在第一象限或第三象限的結(jié)果數(shù)和第二象限或第四象限的結(jié)果數(shù),然后根據(jù)概率公式計(jì)算兩人獲勝的概率.
(1)小紅摸出標(biāo)有數(shù)字3的小球的概率是;
(2)列表如下:
-1 | -2 | 3 | 4 | |
-1 | (-1,-2) | (-1,3) | (-1,4) | |
-2 | (-2,-1) | (-2,3) | (-2,4) | |
3 | (3,-1) | (3,-2) | (3,4) | |
4 | (4,-1) | (4,-2) | (4,3) |
(3)從上面的表格可以看出,所有可能出現(xiàn)的結(jié)果共有12種,且每種結(jié)果出現(xiàn)的可能性相同,其中點(diǎn)(x,y)在第一象限或第三象限的結(jié)果有4種,第二象限或第四象限的結(jié)果有8種,所以小紅獲勝的概率==,小穎獲勝的概率==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=3+,∠B=45°,∠C=105°,點(diǎn) D、E、F分別在AC、BC、AB上,且四邊形ADEF為菱形,若點(diǎn)P是AE上一個(gè)動(dòng)點(diǎn),則PF+PB的最小值為___________ 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E為BC的中點(diǎn),AE與BD相交于點(diǎn)F.若BC=4,∠CBD=30°,則DF的長為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在一次數(shù)學(xué)興趣小組活動(dòng)中,進(jìn)行了如下探索活動(dòng).
問題原型:如圖(1),在矩形ABCD中,AB=6,AD=8,P、Q分別是AB、AD邊的中點(diǎn),以AP、AQ為鄰邊作矩形APEQ,連接CE,則CE的長為 (直接填空)
問題變式:(1)如圖(2),小明讓矩形APEQ繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)至點(diǎn)E恰好落在AD上,連接CE、DQ,請(qǐng)幫助小明求出CE和DQ的長,并求DQ:CE的值.
(2)如圖(3),當(dāng)矩形APEQ繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)至如圖(3)位置時(shí),請(qǐng)幫助小明判斷DQ:CE的值是否發(fā)生變化?若不變,說明理由.若改變,求出新的比值.
問題拓展:若將“問題原型”中的矩形ABCD改變?yōu)槠叫兴倪呅?/span>ABCD,且AB=3,AD=7,∠B=45°,P、Q分別是AB、AD邊上的點(diǎn),且AP=AB,AQ=AD,以AP、AQ為鄰邊作平行四邊形APEQ.當(dāng)平行四邊形APEQ繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)至如圖(4)位置時(shí),連接CE、DQ.請(qǐng)幫助小明求出DQ:CE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,AB=4,點(diǎn)D為AB的中點(diǎn),以點(diǎn)D為圓心作圓心角為90°的扇形DEF,點(diǎn)C恰在弧EF上,則圖中陰影部分的面積為______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點(diǎn),與y軸相交于點(diǎn)C,連接BC,點(diǎn)P為拋物線上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線l,交直線BC于點(diǎn)G,交x軸于點(diǎn)E.
(1)求拋物線的解析式;
(2)如圖1,當(dāng)P位于y軸右邊的拋物線上運(yùn)動(dòng)時(shí),過點(diǎn)C作CF⊥直線l,F為垂足,當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),以P,C,F為頂點(diǎn)的三角形與△OBC相似,并直接寫出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,當(dāng)點(diǎn)P在位于直線BC上方的拋物線上運(yùn)動(dòng)時(shí), 連接PB,PC,設(shè)點(diǎn)P的橫坐標(biāo)為m, △PBC的面積為S,
①求出S與m的函數(shù)關(guān)系式;
②求出點(diǎn)P到直線BC的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)參加1 000米比賽,由于參賽選手較多,將選手隨機(jī)分A、B、C三組進(jìn)行比賽.
(1)甲同學(xué)恰好在A組的概率是________;
(2)求甲、乙兩人至少有一人在B組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果的對(duì)角線相交于點(diǎn),那么在下列條件中,能判斷為菱形的是( )
A. ∠OAB=∠OBA B. ∠OAB=∠OBC
C. ∠OAB=∠OCD D. ∠OAB=∠OAD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=﹣x2+mx的圖象如圖,對(duì)稱軸為直線x=2,若關(guān)于x的一元二次方程﹣x2+mx﹣t=0(t為實(shí)數(shù))在1≤x≤5的范圍內(nèi)有解,則t的取值范圍是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com