【題目】在同一平面直角坐標系中有5個點:A11),B(﹣3,﹣1),C(﹣3,1),D(﹣2.﹣2).

1)畫出△ABC的外接圓⊙P,并指出點D與⊙P相的位置關系;

2E點是y軸上的一點,若直線DE與⊙P相切,求點E的坐標.

【答案】1)見解析,點D在⊙P上;(2E0,﹣3).

【解析】

1)在直角坐標系內描出各點,畫出ABC的外接圓,并指出點D與⊙P的位置關系即可;

2)連接PD,用待定系數(shù)法求出直線DE的關系式進而得出E點坐標.

1)如圖所示:

ABC外接圓的圓心為(﹣10),點D在⊙P上;

2)連接PD,

∵直線DE與⊙P相切,

PDPE,

利用網(wǎng)格過點D做直線的DFPD,則F(﹣6,0),

設過點D,E的直線解析式為:ykx+b

D(﹣2,﹣2),F(﹣6,0),

解得:,

∴直線DE解析式為:y=﹣x3,

x0時,y=﹣3,

E0,﹣3).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)如今,通過“微信運動“發(fā)布自己每天行走的步數(shù),已成為一種時尚,“健身達人”小華為了了解他的微信朋友圈里大家的“建步走運動“情況,隨機抽取了20名好友一天行走的步數(shù),記錄如下:

5640

6430

6320

6798

7325

8430

8215

7453

7446

6754

7638

6834

7325

6830

8648

8753

9450

9865

7290

7850

對這20個數(shù)據(jù)按組距1000進行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:

組別

步數(shù)分組

頻數(shù)

A

5500x6500

2

B

6500x7500

10

C

7500x8500

m

D

8500x9500

2

E

9500x10500

n

請根據(jù)以上信息解答下列問題:

(1)填空:m   n   

(2)補全頻數(shù)分布直方圖.

(3)根據(jù)以上統(tǒng)計結果,第二天小華隨機查看一名好友行走的步數(shù),試估計該好友的步數(shù)不低于7500(7500)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在研究反比例函數(shù)的圖象與性質時,我們對函數(shù)解析式進行了深入分析.

首先,確定自變量的取值范圍是全體非零實數(shù),因此函數(shù)圖象會被軸分成兩部分;其次,分析解析式,得到的變化趨勢:當時,隨著值的增大,的值減小,且逐漸接近于零,隨著值的減小,的值會越來越大,由此,可以大致畫出時的部分圖象,如圖1所示:

利用同樣的方法,我們可以研究函數(shù)的圖象與性質. 通過分析解析式畫出部分函數(shù)圖象如圖2所示.

1)請沿此思路在圖2中完善函數(shù)圖象的草圖并標出此函數(shù)圖象上橫坐標為0的點;(畫出網(wǎng)格區(qū)域內的部分即可)

2)觀察圖象,寫出該函數(shù)的一條性質:____________________;

3)若關于的方程有兩個不相等的實數(shù)根,結合圖象,直接寫出實數(shù)的取值范圍:___________________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,認真觀察下面這些算式,并結合你發(fā)現(xiàn)的規(guī)律,完成下列問題:

1)請寫出:

算式⑤

算式⑥ ;

2)上述算式的規(guī)律可以用文字概括為:“兩個連續(xù)奇數(shù)的平方差能被8整除”,如果設兩個連續(xù)奇數(shù)分別為 (為整數(shù)),請說明這個規(guī)律是成立的;

(3)你認為兩個連續(xù)偶數(shù)的平方差能被8整除這個說法是否也成立呢?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于某一函數(shù)給出如下定義:若存在實數(shù)p,當其自變量為p時,其函數(shù)值等于p,則稱p為這個函數(shù)的不變值,在函數(shù)存在不變值時,該函數(shù)的最大不變值與最小不變值之差q稱為這個函數(shù)的不變長度.特別地,當函數(shù)只有一個不變值時,其不變長度q為零.

(1)判斷函數(shù)y=有沒有不變值?如果有,直接寫出其不變長度.

(2)函數(shù)y=3x2-bx

①若其不變長度為零,求b的值;

②若2≤b≤5,求其不變長度q的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,兩對角線ACBD交于點O,AC=8,BD=6,當△OPD是以PD為底的等腰三角形時,CP的長為( 。

A. 2B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在平面直角坐標系中拋物線經(jīng)過A20),B0,4)兩點,將△OAB繞點O逆時針旋轉90°得到△OCD,點D在拋物線上.

1)求該拋物線的表達式;

2)已知點My軸上(點M不與點B重合),連接AM,若△AOM與△AOB相似,試求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有兩個一元二次方程,,其中,下列四個結論中,錯誤的是( )

A. 如果方程有兩個不相等的實數(shù)根,那么方程也有兩個不相等的實數(shù)根

B. 時,方程和方程有一個相同的根,那么這個根必是

C. 如果是方程的一個根,那么是方程的一個根

D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是⊙O的直徑,AB為⊙O的弦,OPAD,OPAB的延長線交于點P,過B點的切線交OP于點C.

(1)求證:∠CBP=ADB.

(2)若OA=2,AB=1,求線段BP的長.

查看答案和解析>>

同步練習冊答案