【題目】蘇科版九年級下冊數(shù)學(xué)課本65頁有這樣一道習(xí)題:

如圖1,在△ABC中,∠ACB=90°,CD⊥AB,垂足為D.

(1)△ACD△CBD相似嗎?為什么?

(2)圖中還有幾對相似三角形?是哪幾對?

復(fù)習(xí)時(shí),小明提出了新的發(fā)現(xiàn):利用△ACD∽△CBD∽△ABC可以進(jìn)一步證明:

①CD2=ADBD,②BC2=BDAB,③AC2=ADAB.”

(1)請你按照小明的思路,選擇①、②、③中的一個(gè)進(jìn)行證明;

(2)小亮研究小明的發(fā)現(xiàn)時(shí),又驚喜地發(fā)現(xiàn),利用可以證明勾股定理,請你按照小亮思路完成這個(gè)證明;

(3)小麗也由小明發(fā)現(xiàn)的“CD2=ADBD”,進(jìn)一步發(fā)現(xiàn):已知線段a、b,可以用尺規(guī)作圖作出線段c,使c2=ab”,請你完成小麗的發(fā)現(xiàn).(不要求寫出作法,請保留作圖痕跡)

【答案】(1)見解析;(2)見解析;(3)見解析.

【解析】

(1)利用相似三角形的性質(zhì)即可證明;

(2)利用(1)中結(jié)論,可得BC2=BDAB,AC2=ADAB

推出BC2+AC2=BDAB+ADAB=AB(BD+AD)=ABAB=AB2

(3)作以a+b為直徑的圓即可解決問題;

(1)證明:∵△ACD∽△CBD

=,

∴CD2=ADBD.

其余證明方法類似.

(2)證明:∵BC2=BDAB,AC2=ADAB

∴BC2+AC2=BDAB+ADAB

=AB(BD+AD)

=ABAB=AB2

∴BC2+AC2=AB2

(3)如圖,線段c即為所求;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=60°,點(diǎn)P是∠AOB內(nèi)的定點(diǎn)且OP=,若點(diǎn)M、N分別是射線OA、OB上異于點(diǎn)O的動點(diǎn),則PMN周長的最小值是( 。

A. B. C. 6 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,延長,使;延長,使;延長,使;連接、,得.的面積為,則的面積為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,點(diǎn) A 2,2)、B0,1)點(diǎn) P x 軸上,且PAB 的等腰三角形,則滿足條件的點(diǎn) P 共有()個(gè)

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一堤壩的坡角∠ABC=60°,坡面長度AB=24米(圖為橫截面).為了使堤壩更加牢固,需要改變堤壩的坡面,為使得坡面的坡角∠ADB=45°,則應(yīng)將堤壩底端向外拓寬(BD)多少米?(結(jié)果精確到0.1米)(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形,,點(diǎn)是射線上任意點(diǎn)(點(diǎn)與點(diǎn)不重合),連接,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,連接并延長交直線于點(diǎn)

1)如圖①,猜想的度數(shù)是__________;

2)如圖②,圖③,當(dāng)是銳角或鈍角時(shí),其他條件不變,猜想的度數(shù),并選取其中一種情況進(jìn)行證明;

3)如圖③,若,,則的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠ABC=72°.

(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點(diǎn)D(保留作圖痕跡,不要求寫作法);

(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD(AB>AD)中,點(diǎn)E在邊AB上,以點(diǎn)E為圓心,AE長為半徑的⊙E分別交AB、AD于點(diǎn)N、N,與BC所在的直線相切于點(diǎn)G

(1)求證:EG∥MN;

(2)若AB=10,AD與BC之間的距離為6,求⊙E的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,平分于點(diǎn) 于點(diǎn), 過點(diǎn)于點(diǎn),連接

1)求證:四邊形是菱形;

2)若, 求菱形的周長.

查看答案和解析>>

同步練習(xí)冊答案