【題目】如圖,在△ABC中,∠ACB=90°,DBC的中點(diǎn),DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,下列說法:四邊形ACED是平行四邊形,△BCE是等腰三角形,四邊形ACEB的周長(zhǎng)是10+2,④四邊形ACEB的面積是16.

正確的個(gè)數(shù)是 ( )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

【答案】B

【解析】

證明ACDE,再由條件CEAD可證明四邊形ACED是平行四邊形;根據(jù)線段的垂直平分線證明AE=EB可得BCE是等腰三角形;首先利用三角函數(shù)計(jì)算出AD=4,CD=2,再算出AB長(zhǎng)可得四邊形ACEB的周長(zhǎng)是10+2,利用ACBCBE的面積和可得四邊形ACEB的面積.

①∵∠ACB=90°,DEBC,

∴∠ACD=CDE=90°,

ACDE,

CEAD,

∴四邊形ACED是平行四邊形,

所以①正確;

②∵DBC的中點(diǎn),DEBC,

EC=EB,

∴△BCE是等腰三角形,

所以②正確;

③∵AC=2,ADC=30°,

AD=4,CD=2,

∵四邊形ACED是平行四邊形,

CE=AD=4,

CE=EB,

EB=4,DB=2,

CB=4,

AB=,

∴四邊形ACEB的周長(zhǎng)是10+2;

所以③正確;

④四邊形ACEB的面積: ×2×4+×4×2=8,

所以④錯(cuò)誤,

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年9月,莉莉進(jìn)入八中初一,在準(zhǔn)備開學(xué)用品時(shí),她決定購(gòu)買若干個(gè)某款筆記本,甲、乙兩家文具店都有足夠數(shù)量的該款筆記本,這兩家文具店該款筆記本標(biāo)價(jià)都是20/個(gè).甲文具店的銷售方案是:購(gòu)買該筆記本的數(shù)量不超過5個(gè)時(shí),原價(jià)銷售;購(gòu)買該筆記本超過5個(gè)時(shí),從第6個(gè)開始按標(biāo)價(jià)的八折出售:乙文具店的銷售方案是:不管購(gòu)買多少個(gè)該款筆記本,一律按標(biāo)價(jià)的九折出售.

(1)若設(shè)莉莉要購(gòu)買xx>5)個(gè)該款筆記本,請(qǐng)用含x的代數(shù)式分別表示莉莉到甲文具店和乙文具店購(gòu)買全部該款筆記本所需的費(fèi)用;

(2)在(1)的條件下,莉莉購(gòu)買多少個(gè)筆記本時(shí),到乙文具店購(gòu)買全部筆記本所需的費(fèi)用與到甲文具店購(gòu)買全部筆記本所需的費(fèi)用相同?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家電專賣店銷售每臺(tái)進(jìn)價(jià)分別200元、160元的A,B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況

銷售時(shí)段

銷售數(shù)量

銷售收入

A 種型號(hào)

B種型號(hào)

第一周

3臺(tái)

4臺(tái)

1550 元

第二周

4臺(tái)

8臺(tái)

2600 元

(進(jìn)價(jià)、售價(jià)均保持不變,利銷=銷售收入-進(jìn)貨成本)

(1)求A,B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);

(2)若專賣店準(zhǔn)備用不多于3560元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共20臺(tái),且采購(gòu)A型電風(fēng)扇的數(shù)量不少于8臺(tái).求專賣店有哪幾種采購(gòu)方案?

(3)在(2)的條件下.如果采購(gòu)的電風(fēng)扇都能銷售完,請(qǐng)直接寫出哪種采購(gòu)方案專賣店所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知雙曲線y= (k<0)經(jīng)過直角三角形OAB斜邊OA的中點(diǎn)D,且與直角邊AB相交于點(diǎn)C.若點(diǎn)A的坐標(biāo)為(﹣8,6),則△AOC的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分類討論是一種非常重要的數(shù)學(xué)方法,如果一道題提供的已知條件中包含幾種情況,我們可以分情況討論來(lái)求解.例如:若|x|=2,|y|=3求x+y的值.

情況若x=2,y=3時(shí),x+y=5

情況若x=2,y=﹣3時(shí),x+y=﹣1

情況若x=﹣2,y=3時(shí),x+y=1

情況若x=﹣2,y=﹣3時(shí),x+y=﹣5

所以,x+y的值為1,﹣1,5,﹣5.

幾何的學(xué)習(xí)過程中也有類似的情況:

問題(1):已知點(diǎn)A,B,C在一條直線上,若AB=8,BC=3,則AC長(zhǎng)為多少?

通過分析我們發(fā)現(xiàn),滿足題意的情況有兩種

情況當(dāng)點(diǎn)C在點(diǎn)B的右側(cè)時(shí),如圖1,此時(shí),AC=   

情況當(dāng)點(diǎn)C在點(diǎn)B的左側(cè)時(shí),如圖2,此時(shí),AC=   

通過以上問題,我們發(fā)現(xiàn),借助畫圖可以幫助我們更好的進(jìn)行分類.

問題(2):如圖3,數(shù)軸上點(diǎn)A和點(diǎn)B表示的數(shù)分別是﹣1和2,點(diǎn)C是數(shù)軸上一點(diǎn),且BC=2AB,則點(diǎn)C表示的數(shù)是多少?

仿照問題1,畫出圖形,結(jié)合圖形寫出分類方法和結(jié)果.

問題(3):點(diǎn)O是直線AB上一點(diǎn),以O(shè)為端點(diǎn)作射線OC、OD,使AOC=60°,OCOD,求BOD的度數(shù).畫出圖形,直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ab是新規(guī)定的一種運(yùn)算法則:ab=a2+ab,例如3(﹣2)=32+3×(﹣2)=3.

(1)求(﹣3)5的值;

(2)若(﹣2)x=6,求x的值;

(3)若3(2x)=﹣4+x,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

直線y=x+6和x軸,y軸分別交于點(diǎn)E,F(xiàn),點(diǎn)A是線段EF上一動(dòng)點(diǎn)(不與點(diǎn)E重合),過點(diǎn)A作x軸垂線,垂足是點(diǎn)B,以AB為邊向右作長(zhǎng)方形ABCD,AB:BC=3:4.

(1)當(dāng)點(diǎn)A與點(diǎn)F重合時(shí)(圖1),求證:四邊形ADBE是平行四邊形,并求直線DE的表達(dá)式;

(2)當(dāng)點(diǎn)A不與點(diǎn)F重合時(shí)(圖2),四邊形ADBE仍然是平行四邊形?說明理由,此時(shí)你還能求出直線DE的表達(dá)式嗎?若能,請(qǐng)你出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的周長(zhǎng)是20,三邊分別為a,b,c.

(1)若b是最大邊,求b的取值范圍;

(2)若△ABC是三邊均不相等的三角形,b是最大邊,c是最小邊,且b=3c,a,b,c均為整數(shù),求△ABC的三邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠C=90°,∠A=30°

1)用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點(diǎn)D,交AB于點(diǎn)E.(保留作圖痕跡,不要求寫作法和證明);

2)連接BD,求證:BD平分∠CBA

查看答案和解析>>

同步練習(xí)冊(cè)答案