【題目】如圖,已知數(shù)軸上兩點(diǎn)A,B對(duì)應(yīng)的有理數(shù)分別為a,b,A.B兩點(diǎn)之間的距離是AB=AB=;卮鹣铝袉栴}:

(1)數(shù)軸上表示29的兩點(diǎn)之間的距離是 ;表示-38的兩點(diǎn)之間的距離是 ;

(2)如果x-2在數(shù)軸上對(duì)應(yīng)點(diǎn)的距離是5,那么x=

(3)數(shù)軸上表示a-3的兩點(diǎn)之間的距離表示為 ;

(4)若數(shù)軸上表示a的點(diǎn)位于-32之間, ;

(5)當(dāng)點(diǎn)P-23對(duì)應(yīng)的點(diǎn)AB的距離之和為7時(shí),則點(diǎn)P對(duì)應(yīng)的數(shù)是 。

【答案】17、11;(23-7;(3;(45;(5-34.

【解析】

1)根據(jù)數(shù)軸上兩點(diǎn)間的距離公式代入求解即可;(2)根據(jù)題意列方程求解即可;(3)根據(jù)題意列出式子;(4)根據(jù)點(diǎn)a的位置判斷a+3a-2的符號(hào),再根據(jù)絕對(duì)值的定義去絕對(duì)值符號(hào)后化簡即可;(5)根據(jù)題意列出方程,再根據(jù)點(diǎn)P的位置分情況討論求解.

1)數(shù)軸上表示29的兩點(diǎn)之間的距離是;表示-38的兩點(diǎn)之間的距離是;

2)∵x-2在數(shù)軸上對(duì)應(yīng)點(diǎn)的距離是5,∴,

,∴

3)數(shù)軸上表示a-3的兩點(diǎn)之間的距離表示為;

4)∵數(shù)軸上表示a的點(diǎn)位于-32之間,,

|a+3|+|a-2|=a+3+(2-a)=5

5)設(shè)點(diǎn)P在數(shù)軸上對(duì)應(yīng)的點(diǎn)為x,

∵點(diǎn)P-23對(duì)應(yīng)的點(diǎn)AB的距離之和為7,

當(dāng)點(diǎn)P-2的左側(cè)時(shí),,解得x=-3;

當(dāng)點(diǎn)P-23之間時(shí),,無解;

當(dāng)點(diǎn)P3的右側(cè)時(shí),,解得x=4;

綜上P對(duì)應(yīng)的數(shù)是-34.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1已知矩形,,點(diǎn)為矩形中心(交點(diǎn)),現(xiàn)有兩動(dòng)點(diǎn)分別沿著的方向同時(shí)出發(fā)勻速運(yùn)動(dòng),速度都為每秒一個(gè)單位長度,當(dāng)點(diǎn)到達(dá)終點(diǎn)時(shí)兩動(dòng)點(diǎn)都停止運(yùn)動(dòng),連接,在運(yùn)動(dòng)過程中,設(shè)運(yùn)動(dòng)時(shí)間為,線段長度為個(gè)單位長度,的函數(shù)關(guān)系如圖2

(1)      

(2)為多少時(shí),線段經(jīng)過點(diǎn)?并且求出此時(shí)的度數(shù).

(3)運(yùn)動(dòng)過程中,連接,求當(dāng)為直角時(shí)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別為數(shù)軸上的兩點(diǎn),點(diǎn)對(duì)應(yīng)的數(shù)為-5,點(diǎn)對(duì)應(yīng)的數(shù)為55.現(xiàn)有一動(dòng)點(diǎn)6個(gè)單位/秒的速度從點(diǎn)出發(fā),同時(shí)另一動(dòng)點(diǎn)恰好以4個(gè)單位/秒的速度從點(diǎn)出發(fā):

1)若向左運(yùn)動(dòng),同時(shí)向右運(yùn)動(dòng),在數(shù)軸上的點(diǎn)相遇,求點(diǎn)對(duì)應(yīng)的數(shù).

2)若向左運(yùn)動(dòng),同時(shí)向左運(yùn)動(dòng),在數(shù)軸上的點(diǎn)相遇,求點(diǎn)對(duì)應(yīng)的數(shù).

3)若向左運(yùn)動(dòng),同時(shí)向右運(yùn)動(dòng),當(dāng)之間的距離為20個(gè)單位長度時(shí),求此時(shí)點(diǎn)所對(duì)應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動(dòng)課上,老師提出了一個(gè)問題:

如圖1,A、B兩點(diǎn)被池塘隔開,在AB外選一點(diǎn),連接AC和BC,怎樣測(cè)出A、B兩點(diǎn)的距離?

【活動(dòng)探究】學(xué)生以小組展開討論,總結(jié)出以下方法:

(1)如圖2,選取點(diǎn)C,使AC=BC=a,C=60°;

(2)如圖3,選取點(diǎn)C,使AC=BC=b,C=90°;

(3)如圖4,選取點(diǎn)C,連接AC,BC,然后取AC、BC的中點(diǎn)D、E,量得DE=c…

【活動(dòng)總結(jié)】

(1)請(qǐng)根據(jù)上述三種方法,依次寫出A、B兩點(diǎn)的距離.(用含字母的代數(shù)式表示)并寫出方法(3)所根據(jù)的定理.

AB= ,AB= b ,AB=

定理:

(2)請(qǐng)你再設(shè)計(jì)一種測(cè)量方法,(圖5)畫出圖形,簡要說明過程及結(jié)果即可.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,左邊是小顆的圓柱形筆筒,右邊是小彬的六棱柱形筆筒,仔細(xì)觀察兩個(gè)筆簡,并回答下面問題.

(1)圓柱、六棱柱各有幾個(gè)面?

(2)圓柱的側(cè)面與底面相交的線是直的還是曲的?

(3)六棱柱有幾個(gè)頂點(diǎn)?經(jīng)過每個(gè)頂點(diǎn)有幾條棱?

(4)試寫出圓柱與棱柱的相同點(diǎn)與不同點(diǎn)(各寫出一個(gè))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,直線 y=2x+3 與直線 y= 2x 1.

1 )求兩直線與 y 軸交點(diǎn)A,B的坐標(biāo);

2 )求兩直線交點(diǎn) C 的坐標(biāo);

3 )求 ABC 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展了互助、平等、感恩、和諧、進(jìn)取主題班會(huì)活動(dòng),活動(dòng)后,就活動(dòng)的個(gè)主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個(gè)),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,解答下列問題:

(1)這次調(diào)查的學(xué)生共有多少名?

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并在扇形統(tǒng)計(jì)圖中計(jì)算出進(jìn)取所對(duì)應(yīng)的圓心角的度數(shù).

(3)如果要在這個(gè)主題中任選兩個(gè)進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個(gè)主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,O為AC中點(diǎn),EF過O點(diǎn)且EF⊥AC分別交DC于F,交AB于點(diǎn)E,點(diǎn)G是AE中點(diǎn)且∠AOG=30°,則下列結(jié)論正確的個(gè)數(shù)為(
(1)DC=3OG; (2)OG=BC; ( 3)OGE是等邊三角形; ( 4)SAOE= S矩形ABCD

A. 1

B. 2

C. 3

D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題,求解下列各題:

1)兩個(gè)單項(xiàng)式與﹣5my1n6是同類項(xiàng),求解xy;

2)兩個(gè)單項(xiàng)式m|3x2|n|y+1|2m4n6|2y1|是同類項(xiàng),求解xy;

3)兩個(gè)單項(xiàng)式mnax+ab是同類項(xiàng),求解x

查看答案和解析>>

同步練習(xí)冊(cè)答案