如圖1、2,已知四邊形ABCD為正方形,在射線AC上有一動點P,作PE⊥AD(或延長線)于E,作PF⊥DC(或延長線)于F,作射線BP交EF于G.
(1)在圖1中,設正方形ABCD的邊長為2,四邊形ABFE的面積為y,AP=x,求y關于x的函數(shù)表達式;
(2)結論:GB⊥EF對圖1,圖2都是成立的,請任選一圖形給出證明;
(3)請根據(jù)圖2證明:△FGC∽△PFB.
(1)y=x2+2;(2)證明見解析;(3)證明見解析.
解析試題分析:(1)根據(jù)題意得出S四邊形ABFE=4﹣ED×DF﹣BC×FC進而得出答案;
(2)首先利用正方形的性質進而證明△FPE≌△BHP(SAS),即可得出△FPG∽△BPH,求出即可;
(3)首先得出△DPC≌△BPC(SAS),進而利用相似三角形的判定得出△FGC∽△PFB.
試題解析:(1)解:∵PE⊥AD,PF⊥DC,
∴四邊形EPFD是矩形,
∵AP=x,
∴AE=EP=DF=x,
DE=PF=FC=2﹣x,
∴S四邊形ABFE=4﹣ED•DF﹣BC•FC=x2+2;
(2)證明:如圖1,延長FP交AB于H,
∵PF⊥DC,PE⊥AD,
∴PF⊥PE,PH⊥HB,
即∠BHP=90°,
∵四邊形ABCD是正方形,
∴AC平分∠DAB,
∴可得PF=FC=HB,EP=PH,
在△FPE與△BHP中
,
∴△FPE≌△BHP(SAS),
∴∠PFE=∠PBH,
又∵∠FPG=∠BPH,
∴△FPG∽△BPH,
∴∠FGP=∠BHP=90°,
即GB⊥EF;
(3)證明:如圖2,連接PD,
∵GB⊥EF,
∴∠BPF=∠CFG①,
在△DPC和△BPC中
,
∴△DPC≌△BPC(SAS),
∴PD=PB,
而PD=EF,∴EF=PB,
又∵GB⊥EF,
∴PF2=FG•EF,
∴PF2=FG•PB,
而PF=FC,
∴PF•FC=FG•PB,
∴②,
∴由①②得△FGC∽△PFB.
考點:四邊形綜合題.
科目:初中數(shù)學 來源: 題型:填空題
崇左市政府大樓前廣場有一噴水池,水從地面噴出,噴出水的路徑是一條拋物線.如果以水平地面為x軸,建立如圖所示的平面直角坐標系,水在空中劃出的曲線是拋物線y=﹣x2+4x(單位:米)的一部分.則水噴出的最大高度是 千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知拋物線圖象經(jīng)過A(-1,0),B(4,0)兩點.
(1)求拋物線的解析式;
(2)若C(m,m-1)是拋物線上位于第一象限內(nèi)的點,D是線段AB上的一個動點(不與A、B重合),過點D分別作DE∥BC交AC于E,DF∥AC交BC于F.
①求證:四邊形DECF是矩形;
②連結EF,線段EF的長是否存在最小值?若存在,求出EF的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中(O為坐標原點),已知拋物線y=x2+bx+c過點A(4,0),B(1,﹣3).
(1)求b,c的值,并寫出該拋物線的對稱軸和頂點坐標;
(2)設拋物線的對稱軸為直線l,點P(m,n)是拋物線上在第一象限的點,點E與點P關于直線l對稱,點E與點F關于y軸對稱,若四邊形OAPF的面積為48,求點P的坐標;
(3)在(2)的條件下,設M是直線l上任意一點,試判斷MP+MA是否存在最小值?若存在,求出這個最小值及相應的點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,拋物線:y=ax2+bx+4與x軸交于點A(-2,0)和B(4,0)、與y軸交于點C.
(1)求拋物線的解析式;
(2)T是拋物線對稱軸上的一點,且△ACT是以AC為底的等腰三角形,求點T的坐標;
(3)點M、Q分別從點A、B以每秒1個單位長度的速度沿x軸同時出發(fā)相向而行.當點M原點時,點Q立刻掉頭并以每秒個單位長度的速度向點B方向移動,當點M到達拋物線的對稱軸時,兩點停止運動.過點M的直線l⊥軸,交AC或BC于點P.求點M的運動時間t(秒)與△APQ的面積S的函數(shù)關系式,并求出S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知二次函數(shù)的圖象過A(2,0),B(0,-1)和C(4,5)三點。
(1)求二次函數(shù)的解析式;
(2)設二次函數(shù)的圖象與軸的另一個交點為D,求點D的坐標;
(3)在同一坐標系中畫出直線,并寫出當在什么范圍內(nèi)時,一次函數(shù)的值大于二次函數(shù)的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖①,已知等腰梯形ABCD的周長為48,面積為S,AB∥CD,∠ADC=60°,設AB=3x.
(1)用x表示AD和CD;
(2)用x表示S,并求S的最大值;
(3)如圖②,當S取最大值時,等腰梯形ABCD的四個頂點都在⊙O上,點E和點F分別是AB和CD的中點,求⊙O的半徑R的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,拋物線經(jīng)過點(0,),(3,4).
(1)求拋物線的表達式及對稱軸;
(2)設點關于原點的對稱點為,點是拋物線對稱軸上一動點,記拋物線在,之間的部分為圖象(包含,兩點).若直線與圖象有公共點,結合函數(shù)圖像,求點縱坐標的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖所示,已知二次函數(shù)經(jīng)過、、C三點,點是拋物線與直線的一個交點.
(1)求二次函數(shù)關系式和點C的坐標;
(2)對于動點,求的最大值;
(3)若動點M在直線上方的拋物線運動,過點M做x軸的垂線交x軸于點F,如果直線AP把線段MF分成1:2的兩部分,求點M的坐標。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com