【題目】“十一”期間,包河區(qū)牛角大圩60畝的秋季花海是游客觀賞的首選景點,有著獨具一格的農(nóng)業(yè)風情,花海由矮牽牛、孔雀菊、藍花鼠尾草、一串紅等組成。為了種植“花!,需要從甲乙兩地向大圩A.B兩個大棚配送營養(yǎng)土,已知甲地可調(diào)出50噸營養(yǎng)土,乙地可調(diào)出80噸營養(yǎng)土,A棚需70噸營養(yǎng)土,B棚需60噸營養(yǎng)土,甲乙兩地運往A.B兩棚的運費如下表所示(表中運費欄“元/噸”表示運送每噸營養(yǎng)土所需人民幣).

運費(元/噸)

A

B

甲地

12

12

乙地

10

8

(1)設甲地運往棚營養(yǎng)土噸,請用關于的代數(shù)式完成下表;

運往A.B兩地的噸數(shù)

A

B

甲地

乙地

___

___

(2)設甲地運往A棚營養(yǎng)土噸,求總運費 (元)關于 (噸)的函數(shù)關系式(要求寫出自變量取值范圍).

(3)當甲、乙兩地各運往A.B兩棚多少噸營養(yǎng)土時,總運費最省?最省的總運費是多少?

【答案】(1),

(2),

(3)甲地運往A50噸,運往B0噸,乙地運往A20噸,運往B60噸,最少運費1280.

【解析】

(1)設甲地運往A棚營養(yǎng)土x噸,則甲地運往B棚營養(yǎng)土(50-x)噸,乙地運往A棚營養(yǎng)土(70-x)噸,乙地運往B棚(x+10)噸,就可以得出結(jié)論;
(2)費用=單價×路程,根據(jù)總運費=各種運輸方案的費用之和就可以表示出yx的關系式;
(3)由(2)的解析式的性質(zhì)就可以求出結(jié)論.

(1)設甲地運往A棚營養(yǎng)土噸,則甲地運往B棚營養(yǎng)土噸,乙地運往A棚營養(yǎng)土噸,乙地運往B棚噸。

故答案為:;

(2)由題意,得,∴.

(3)∵,∴,

的增大而減小,

∴當時,取得最省運費

∴甲地運往A棚50噸,運往B棚0噸,

乙地運往A棚20噸,運往B棚60噸.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,定義點P(x,y)的變換點為P′(x+y,x﹣y).
(1)如圖1,如果⊙O的半徑為2 ,
①請你判斷M(2,0),N(﹣2,﹣1)兩個點的變換點與⊙O的位置關系;
②若點P在直線y=x+2上,點P的變換點P′在⊙O的內(nèi),求點P橫坐標的取值范圍.

(2)如圖2,如果⊙O的半徑為1,且P的變換點P′在直線y=﹣2x+6上,求點P與⊙O上任意一點距離的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,斜坡AP的坡度為1:2.4,坡長AP為26米,在坡頂A處的同一水平面上有一座古塔BC,在斜坡底P處測得該塔的塔頂B的仰角為45°,在坡頂A處測得該塔的塔頂B的仰角為76°.求:

(1)坡頂A到地面PQ的距離;
(2)古塔BC的高度(結(jié)果精確到1米).(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,建立平面直角坐標系后的頂點均在格點上。

(1)寫出點的坐標

(2)畫出向上平移3個單位,向左平移5個單位得到的的圖像 ,并寫出頂點坐標;

(3)求.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)已知一個多邊形的內(nèi)角和是它的外角和的 3 倍,求這個多邊形的邊數(shù).

(2)如圖,點F ABC 的邊 BC 延長線上一點.DFAB,A=30°,F=40°,求∠ACF 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,E、F分別為線段AC上的兩個點,且DEAC于點E,BFAC于點F,若AB=CD,AE=CF,BDAC于點M.

(1)試猜想DEBF的關系,并證明你的結(jié)論;

(2)求證:MB=MD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點 D AB的中點.

(1)如果點 P 在線段 BC 上以 1cm/s 的速度由點 B 向點 C 運動,同時,點 Q 在線段 CA 上由點 C 向點 A 運動.

若點 Q 的運動速度與點 P 的運動速度相等,經(jīng)過 1 秒后,△BPD △CQP 是否全等,請說明理由;

若點 Q 的運動速度與點 P 的運動速度不相等,當點 Q 的運動速度為多少時,能夠使△BPD △CQP 全等?

(2)若點 Q 以②中的運動速度從點 C 出發(fā),點 P 以原來的運動速度從點 B 同時出發(fā),都逆時針沿△ABC 三邊運動,則經(jīng)過 后,點 P 與點 Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標系分別為A(-2,1),B(-1,4),C(-3,-2)

(1)以原點O為位似中心,位似比為1:2,在y軸的左側(cè),畫出△ABC放大后的圖形△A1B1C1 , 并直接寫出C1點坐標;
(2)如果點Da , b)在線段AB上,請直接寫出經(jīng)過(1)的變化后點D的對應點D1的坐標.

查看答案和解析>>

同步練習冊答案