【題目】如圖,ABC的周長為17,點D,E在邊BC上,∠ABC的平分線垂直于AE,垂足為點N,∠ACB的平分線垂直于AD,垂足為點M,若BC6,則MN的長度為_____

【答案】2.5

【解析】

證明BNA≌△BNE,得到BA=BE,即BAE是等腰三角形,同理CAD是等腰三角形,根據題意求出DE,根據三角形中位線定理計算即可.

解:∵BN平分∠ABCBNAE,

∴∠NBA=∠NBE,∠BNA=∠BNE,

在△BNA和△BNE中,

∴△BNA≌△BNEASA),

BABE,

∴△BAE是等腰三角形,

同理△CAD是等腰三角形,

∴根據等腰三角形三線合一的性質,可得:點NAE中點,點MAD中點,

MN是△ADE的中位線,

BE+CDAB+AC17BC17611

DEBE+CDBC5,

MNDE2.5

故答案為:2.5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線x軸,y軸分別交于A,B兩點,點為直線上一點,直線過點C

mb的值;

直線x軸交于點D,動點P從點D開始以每秒1個單位的速度向x軸負方向運動設點P的運動時間為t秒.

①若點P在線段DA上,且的面積為10,求t的值;

②是否存在t的值,使為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)ykx+b和反比例函數(shù)y圖象相交于A(-4,2),B(n,-4)兩點.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求AOB的面積;

(3)觀察圖象,直接寫出不等式kxb<0的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,平分,且,與相交于點,邊的中點,連接相交于點,下列結論正確的有( )

;②;③;④是等腰三角形;⑤.

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于點D;CE平分∠ACB,交AB于點E,交BD于點F.

(1)求證:△BEF是等腰三角形;

2)求證:BD=BC+BF).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)(是常數(shù),)在同一平面直角坐標系的圖象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點的坐標是,動點從原點O出發(fā),沿著軸正方向移動,以為斜邊在第一象限內作等腰直角三角形,設動點的坐標為.

(1)時,點的坐標是 ;當時,點的坐標是 ;

(2)求出點的坐標(用含的代數(shù)式表示);

(3)已知點的坐標為,連接、,過點軸于點,求當為何值時,當全等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形,點在邊上,連接沿翻折,得到,且點中點,取中點,點為線段上一動點,連接,,若長為2,則的最小值為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列結論正確的個數(shù)是(  )

(1)一個多邊形的內角和是外角和的3倍,則這個多邊形是六邊形;

(2)如果一個三角形的三邊長分別為6、8、10,則最長邊上的中線長為5;

(3)若ABC∽△DEF,相似比為1:4,則SABC:SDEF=1:4;

(4)若等腰三角形一個角為80°,則底角為80°50°.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案