【題目】如圖,已知兩條射線OMCN,動(dòng)線段AB的兩個(gè)端點(diǎn)A,B分別在射線OM,CN上,且∠C=∠OAB108°,點(diǎn)E在線段CB上,OB平分∠AOE

(1)圖中有哪些與∠AOC相等的角?并說明理由;

(2)若平移AB,那么∠OBC與∠OEC的度數(shù)比是否隨著AB位置變化而變化?若變化,找出變化規(guī)律;若不變,求出這個(gè)比值.

【答案】1)∠ABC和∠BAM,理由見解析;(212

【解析】

1)根據(jù)平行線的性質(zhì)和角的關(guān)系解答即可;

2)根據(jù)平行線的性質(zhì)和角平分線的定義解答即可.

1)∵OMCN,∴∠AOC180°-∠C180°108°72°,

ABC180°-∠OAB180°108°72°

又∵∠BAM180°-∠OAB180°108°72°,

∴與∠AOC相等的角是∠ABC和∠BAM

2)∵OMCN,∴∠OBC=∠AOB,∠OEC=∠AOE

OB平分∠AOE ∴∠AOE2AOB

∴∠OEC2OBC ∴∠OBC:∠OEC12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一位小朋友在不打滑的平面軌道上滾動(dòng)一個(gè)半徑為5cm的圓環(huán),當(dāng)滾到與坡面BC開始相切時(shí)停止.其AB=40cm,BC與水平面的夾角為60°.其圓心所經(jīng)過的路線長(zhǎng)是cm(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】M 城氣象中心測(cè)得臺(tái)風(fēng)中心在 M 城正北方向 240km P 處,以每小時(shí) 45km 的速度向南偏東 30° PB 方向移動(dòng),距臺(tái)風(fēng)中心 150km 的范圍內(nèi)是受臺(tái)風(fēng)影響的區(qū)域,則 M 受臺(tái)風(fēng)影響的時(shí)間為( )小時(shí).

A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD,AB2BC,在CD上取點(diǎn)E,使AEEB,那么∠EBC等于(  )

A. 15°B. 30°C. 45°D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,DE分別是AB、AC的中點(diǎn),BE=2DE,延長(zhǎng)DE到點(diǎn)F,使得EF=BE,連接CF

1)求證:四邊形BCFE是菱形;

2)若CE=4,BCF=120°,求菱形BCFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場(chǎng)購(gòu)進(jìn)一種單價(jià)為40元的書包,如果以單價(jià)50元出售,那么每月可售出30個(gè),根據(jù)銷售經(jīng)驗(yàn),售價(jià)每提高5元,銷售量相應(yīng)減少1個(gè).
(1)請(qǐng)寫出銷售單價(jià)提高 元與總的銷售利潤(rùn)y元之間的函數(shù)關(guān)系式;
(2)如果你是經(jīng)理,為使每月的銷售利潤(rùn)最大,那么你確定這種書包的單價(jià)為多少元?此時(shí),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上的兩點(diǎn)A、B所表示的數(shù)分別是ab,O為數(shù)軸上的原點(diǎn),如果有理數(shù)a,b滿足

(1)ab的值;

(2)若點(diǎn)P是一個(gè)動(dòng)點(diǎn),以每秒5個(gè)單位長(zhǎng)度的速度從點(diǎn)A出發(fā),沿?cái)?shù)軸向右運(yùn)動(dòng),請(qǐng)問經(jīng)過多長(zhǎng)時(shí)間,點(diǎn)P恰巧到達(dá)線段AB的三等分點(diǎn)?

(3)若點(diǎn)C是線段AB的中點(diǎn),點(diǎn)M以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)C開始向右運(yùn)動(dòng),同時(shí)點(diǎn)P以每秒5個(gè)單位長(zhǎng)度的速度從點(diǎn)A出發(fā)向右運(yùn)動(dòng),點(diǎn)N以每秒4個(gè)單位長(zhǎng)度的速度從點(diǎn)B開始向左運(yùn)動(dòng),點(diǎn)P與點(diǎn)M之間的距離表示為PM,點(diǎn)P與點(diǎn)N之間的距離表示為PN,是否存在某一時(shí)刻使得PM+PN=12?若存在,請(qǐng)求出此時(shí)點(diǎn)P表示的數(shù);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰RtABC中,∠ACB90°,DBC的中點(diǎn),DEAB,垂足為E,過點(diǎn)BBFACDE的延長(zhǎng)線于點(diǎn)F,連接CF

1)求證:ADCF

2)連接AF,試判斷ACF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AC、BD交于點(diǎn)O,點(diǎn)P、E分別是直線BD、BC上的動(dòng)點(diǎn),且PEPC,過點(diǎn)EEFAC交直線BD于點(diǎn)F

1)如圖1,當(dāng)∠COD90°時(shí),判斷BEF的形狀,并說明理由;

2)如圖2,當(dāng)點(diǎn)P在線段BO上時(shí),求證:OPBF;

3)當(dāng)∠COD60°,CD3時(shí),請(qǐng)直接寫出當(dāng)PEF成為直角三角形時(shí)的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案