【題目】一位小朋友在不打滑的平面軌道上滾動一個半徑為5cm的圓環(huán),當滾到與坡面BC開始相切時停止.其AB=40cm,BC與水平面的夾角為60°.其圓心所經(jīng)過的路線長是cm(結(jié)果保留根號).

【答案】40﹣
【解析】解:連接OD、BD,作DE⊥AB,

∵BC與水平面的夾角為60°,
∴∠DBE=60°,
∴∠BDE=30°,
設(shè)BE=x,則BD=2x,
∴由勾股定理得4x2﹣x2=25,
解得x= ,
∴OD=AE=40﹣ ,
故答案為40﹣
根據(jù)題意畫出圖形,連接OD、BD,作DE⊥AB,根據(jù)切線長定理得出DB平分∠CBE,求出∠DBE,∠BDE的度數(shù),利用勾股定理求出BE的長,再根據(jù)OD=AE=AB=BE。計算即可得出答案。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某開發(fā)區(qū)有一塊四邊形的空地ABCD,現(xiàn)計劃在空地上種植草皮,經(jīng)測量∠A90°,AB3m,BC12m,CD13mDA4m,若每平方米草皮需要200元,則要投入_____元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O

1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;

2)如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿AFBCDE各邊勻速運動一周.即點PA→F→B→A停止,點QC→D→E→C停止.在運動過程中,

①已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當AC、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.

②若點P、Q的運動路程分別為a、b(單位:cm,ab≠0),已知AC、P、Q四點為頂點的四邊形是平行四邊形,求ab滿足的數(shù)量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】超速行駛是引發(fā)交通事故的主要原因.上周末,小鵬等三位同學在濱海大道紅樹林路段,嘗試用自己所學的知識檢測車速,觀測點設(shè)在到公路l的距離為100米的P處.這時,一輛富康轎車由西向東勻速駛來,測得此車從A處行駛到B處所用的時間為3秒,并測得∠APO=60°,BPO=45°,試判斷此車是否超過了每小時80千米的限制速度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是一張三角形的紙片,⊙O是它的內(nèi)切圓,點D是其中的一個切點,已知AD=10cm , 小明準備用剪刀沿著與⊙O相切的任意一條直線MN剪下一塊三角形(△AMN),則剪下的△AMN的周長為( 。

A.20cm
B.15cm
C.10cm
D.隨直線MN的變化而變化

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y1=x+2x軸、y軸分別相交于點A和點B,直線y2=kx+b(k≠0)經(jīng)過點C(10)且與線段AB交于點P,并把△ABO分成兩部分.

(1)AB的坐標;

(2)△ABO的面積;

(3)△ABO被直線CP分成的兩部分的面積相等,求點P的坐標及直線CP的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y= -+1x軸、y軸分別交于點A、點B(O為坐標原點),將△ABO繞著點B逆時針旋轉(zhuǎn)60°后,點A恰好落在點C處,那么點C的坐標為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線過點A(2,0),B(﹣1,0),與y軸交于點C,且OC=2.則這條拋物線的解析式為(
A.y=x2﹣x﹣2
B.y=﹣x2+x+2
C.y=x2﹣x﹣2或y=﹣x2+x+2
D.y=﹣x2﹣x﹣2或y=x2+x+2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知兩條射線OMCN,動線段AB的兩個端點AB分別在射線OM,CN上,且∠C=∠OAB108°,點E在線段CB上,OB平分∠AOE

(1)圖中有哪些與∠AOC相等的角?并說明理由;

(2)若平移AB,那么∠OBC與∠OEC的度數(shù)比是否隨著AB位置變化而變化?若變化,找出變化規(guī)律;若不變,求出這個比值.

查看答案和解析>>

同步練習冊答案