【題目】如圖,PA、PB分別切圓O于A、B兩點(diǎn),C為劣弧AB上一點(diǎn),∠APB=40°,則∠ACB=( ).
A.70°B.80°C.110°D.140°
【答案】C
【解析】
如圖,連接AO,OB,PA、PB分別切圓O于A、B兩點(diǎn),可以知道∠PAO=∠PBO=90°,由此可以求出∠AOB的度數(shù);設(shè)點(diǎn)E是優(yōu)弧AB上一點(diǎn),由圓周角定理知,∠E=70°,由圓內(nèi)接四邊形的對(duì)角互補(bǔ)即可求出∠ACB的度數(shù).
如圖,連接AO,OB,
∵PA、PB分別切圓O于A、B兩點(diǎn),
∴∠PAO=∠PBO=90°,
∴∠AOB=180°-∠APB=140°,
設(shè)點(diǎn)E是優(yōu)弧AB上一點(diǎn),
由圓周角定理知,∠E=70°,
由圓內(nèi)接四邊形的對(duì)角互補(bǔ)知,
∠ACB=180°-∠E=110°.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人定制了一批地磚,每塊地磚(如圖(1)所示)是邊長為0.5米的正方形.點(diǎn)E、F分別在邊和上,、和四邊形均由單一材料制成,制成、和四邊形的三種材料的價(jià)格依次為每平方米30元、20元、10元.若將此種地磚按圖(2)所示的形式鋪設(shè),且中間的陰影部分組成正方形.設(shè).
(1)________,_________.(用含有x的代數(shù)式表示).
(2)已知燒制該種地磚平均每塊需加工費(fèi)0.35元,若要長大于0.1米,且每塊地磚的成本價(jià)為4元(成本價(jià)=材料費(fèi)用+加工費(fèi)用),則長應(yīng)為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=∠ABC,BE⊥AC,垂足為點(diǎn)E,△BDE是等邊三角形,若AD=4,則線段BE的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來測(cè)量操場(chǎng)旗桿AB的高度,他們通過調(diào)整測(cè)量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點(diǎn)A在同一直線上,已知DE=0.5m,EF=0.25m,目測(cè)點(diǎn)D到地面的距離DG=1.5m,到旗桿的水平距離DC=20m,則旗桿的高度為( )
A. mB. m
C.11.5mD.10m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是平行四邊形,OB=OC=2,AB=.
(1)求點(diǎn)D的坐標(biāo),直線CD的函數(shù)表達(dá)式;
(2)已知點(diǎn)P是直線CD上一點(diǎn),當(dāng)點(diǎn)P滿足S△PAO=S△ABO時(shí),求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F(不與A、B重合),使以A、 C、 F、M為頂點(diǎn)的四邊形為菱形?若存在,直接寫出F點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)在(﹣3,0和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:①2a﹣b=0:②4ac﹣b2<0:③點(diǎn)(x1,y1),(x2,y2)在拋物線上若x1<x2,則y1<y2;④a+b+c<0.正確結(jié)論的個(gè)數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)已知:ABCD的兩邊AB,AD的長是關(guān)于x的方程的兩個(gè)實(shí)數(shù)根.
(1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長;
(2)若AB的長為2,那么ABCD的周長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閨蜜裝在大學(xué)校園里盛行,閨蜜裝能很好的表達(dá)“親如姐妹”的友誼,也能成為校園一道靚麗的風(fēng)景.某專賣店購進(jìn)一批,兩款閨蜜裝,共花費(fèi)了18400元,款比款多20套,其中每套款閨蜜裝進(jìn)價(jià)200元,每套款閨蜜裝進(jìn)價(jià)160元.進(jìn)行試銷售,供不應(yīng)求,很快銷售完畢,己知每套款閨蜜裝售價(jià)為240元.
(1)求購進(jìn),兩款閨蜜裝各多少套?
(2)國慶將至,專賣店又購進(jìn)第二批,兩款閨蜜裝并進(jìn)行促銷活動(dòng),在促銷期間,每套款閨蜜裝在進(jìn)價(jià)的基礎(chǔ)上提高銷售,每套款閨蜜裝在第一批售價(jià)的基礎(chǔ)上降低銷售,結(jié)果在促銷售活動(dòng)中,款閨蜜裝的銷量比第一批款銷售量降低了,款閨蜜裝的銷售量比第一批款銷售量上升了,結(jié)果本次促銷活動(dòng)共獲利5200元,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(定義)從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.
(1)如圖1,△ABC中,∠A=40°,∠B=60°,CD平分∠ACB.求證:CD為△ABC的完美分割線;
(2)在△ABC中,CD是△ABC的完美分割線,其中△ACD為等腰三角形,設(shè)∠A=x°,∠B=y°,則y與x之間的關(guān)系式為_____________________________;
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com