【題目】如圖,在△ABC中,∠C=ABC,BEAC,垂足為點E,BDE是等邊三角形,若AD=4,則線段BE的長為______

【答案】4

【解析】

本題首先由等邊三角形的性質(zhì)及垂直定義得到∠DBE=60°,BEC=90°,再根據(jù)等腰三角形的性質(zhì)可以得出∠EBC=ABC-60°=C-60°,最后根據(jù)三角形內(nèi)角和定理得出關(guān)系式∠C-60°+C=90°解出∠C,推出AD=DE,于是得到結(jié)論.

∵△BDE是正三角形,

∴∠DBE=60°;

∵在ABC中,∠C=ABC,BEAC,

∴∠C=ABC=ABE+EBC,則∠EBC=ABC-60°=C-60°,BEC=90°;

∴∠EBC+C=90°,即∠C-60°+C=90°,

解得∠C=75°,

∴∠ABC=75°,

∴∠A=30°,

∵∠AED=90°-DEB=30°,

∴∠A=AED,

DE=AD=4,

BE=DE=4,

故答案為:4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】家庭過期藥品屬于“國家危險廢物“處理不當(dāng)將污染環(huán)境,危害健康。某市藥監(jiān)部門為了了解市民家庭處理過期藥品的方式,決定對全市家庭作一次簡單隨機(jī)抽樣調(diào)查
(1)下列選取樣本的方法最合理的一種是(只需填上正確答案的序號)
①在市中心某個居民區(qū)以家庭為單位隨機(jī)抽取;
②在全市醫(yī)務(wù)工作者中以家庭為單位隨機(jī)抽、墼谌谐W∪丝谥幸约彝閱挝浑S機(jī)抽取.
(2)本次抽樣調(diào)查發(fā)現(xiàn),接受調(diào)查的家庭都有過期藥品,現(xiàn)將有關(guān)數(shù)據(jù)呈現(xiàn)如下圖:


①求m、n的值.
②補全條形統(tǒng)計圖
③根據(jù)調(diào)查數(shù)據(jù),你認(rèn)為該市市民家庭處理過期藥品最常見的方式是什么?
④家庭過期藥品的正確處理方式是送回收點,若該市有180萬戶家庭,請估計大約有多少戶家庭處理過期藥品的方式是送回收點。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,張老師舉了下面的例題:

1 等腰三角形 ABC 中,∠A=110°,求∠B 的度數(shù).

2 等腰三角形 ABC 中,∠A=40°,求∠B 的度數(shù)

張老師啟發(fā)同學(xué)們進(jìn)行變式,小敏編了如下一題:變式等腰三角形 ABC 中,∠A=70°,求∠B 的度數(shù).

1)請你解答以上的變式題.

2)在等腰三角形 ABC 中,設(shè)∠Ax°,請用 x°表示出∠B 的度數(shù);

3)結(jié)合(1)(2),小敏發(fā)現(xiàn),∠A 的度數(shù)不同,得到∠B 的度數(shù)的個數(shù)也可能不同,當(dāng)∠B 有三種情況三個不同的度數(shù)時,討論此時 x 的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校九年級學(xué)生的跳高水平,隨機(jī)抽取該年級50名學(xué)生進(jìn)行跳高測試,并把測試成績繪制成如圖所示的頻數(shù)表和未完成的頻數(shù)直方圖(每組含前一個邊界值,不含后一個邊界值).

某校九年級50名學(xué)生跳高測試成績的頻數(shù)表

組別(m)

頻數(shù)

1.09~1.19

8

1.19~1.29

12

1.29~1.39

A

1.39~1.49

10

(1)求a的值,并把頻數(shù)直方圖補充完整;

(2)該年級共有500名學(xué)生,估計該年級學(xué)生跳高成績在1.29m(含1.29m)以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,B=30°,ADAB,交BC于點D,AD=4,則BC的長為( )

A. 8 B. 4 C. 12 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù)y=ax2+bx的圖象經(jīng)過點M(1,n)、N(3,n).
(1)求b與a之間的關(guān)系式;
(2)若二次函數(shù)y=ax2+bx的圖象與x軸交于點A、B,頂點為C,△ABC為直角三角形,求該二次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABCD,∠1=2,∠3=4

1)求證:ADBE

2)若∠B=3=22,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0),B(0,﹣ ),C(2,0),其對稱軸與x軸交于點D

(1)求二次函數(shù)的表達(dá)式及其頂點坐標(biāo);
(2)若P為y軸上的一個動點,連接PD,則 PB+PD的最小值為;
(3)M(x,t)為拋物線對稱軸上一動點
①若平面內(nèi)存在點N,使得以A,B,M,N為頂點的四邊形為菱形,則這樣的點N共有 個;
②連接MA,MB,若∠AMB不小于60°,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某科技有限公司準(zhǔn)備購進(jìn)AB兩種機(jī)器人來搬運化工材料,已知購進(jìn)A種機(jī)器人2個和B種機(jī)器人3個共需16萬元,購進(jìn)A種機(jī)器人3個和B種機(jī)器人2個共需14萬元,請解答下列問題:

(1)求A、B兩種機(jī)器人每個的進(jìn)價;

(2)已知該公司購買B種機(jī)器人的個數(shù)比購買A種機(jī)器人的個數(shù)的2倍多4個,如果需要購買A、B兩種機(jī)器人的總個數(shù)不少于28個,且該公司購買的A、B兩種機(jī)器人的總費用不超過106萬元,那么該公司有哪幾種購買方案?

查看答案和解析>>

同步練習(xí)冊答案