【題目】如圖,為⊙的直徑,點(diǎn)是半徑上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合),為⊙的半徑,⊙的弦與⊙相切于點(diǎn),的延長(zhǎng)線交⊙于點(diǎn).
(1)設(shè),則與之間的數(shù)量關(guān)系是什么?請(qǐng)說(shuō)明理由.
(2)若,點(diǎn)關(guān)于的對(duì)稱(chēng)點(diǎn)為,連接.
①當(dāng) 時(shí),四邊形是菱形;
②當(dāng) 時(shí),點(diǎn)是弦的中點(diǎn).
【答案】(1),理由見(jiàn)解析;(2)①;②1
【解析】
(1)由切線的性質(zhì)得90°,再利用三角形內(nèi)角和推導(dǎo)兩個(gè)角之間的關(guān)系;
(2)①由菱形得對(duì)角線互相垂直平分,構(gòu)造出兩個(gè)相似的三角形,再利用對(duì)應(yīng)邊成比例解方程即可;②由直徑得垂直,由中點(diǎn)和垂直得垂直平分線,再利用圓的性質(zhì)從而證得點(diǎn)O與點(diǎn)H重合即可.
證明:(1)2α-β=90°.
理由:連接PC.
∵BD是⊙P的切線,
∴α+∠2=∠1=90°.
∴∠3+β=90°.
∵PA=PC,
∴∠A=∠2.
∵∠3是△APC的外角,
∴∠3=∠A+∠2=2∠2=2(90°-α).
∴2(90°-α)+ β= 90°.
整理,得2α-β=90°.
(2)①;
連接PC,
⊙的弦與⊙相切于點(diǎn)
若四邊形是菱形
則,垂足為G,且
在△CGP和△BPC中,
,
設(shè),則,
,即
解得
當(dāng)時(shí),四邊形是菱形;
②1.
連接CH、EH
則
即
又點(diǎn)是弦的中點(diǎn)
故CH是弦AE的垂直平分線
又圓心O在弦AE的垂直平分線上
點(diǎn)O與點(diǎn)H重合
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的直徑AB=10,弦AC=6,∠ACB的平分線交⊙O于D,過(guò)點(diǎn)D作DE∥AB交CA的延長(zhǎng)線于點(diǎn)E,連接AD,BD.
(1)由AB,BD,圍成的曲邊三角形的面積是 ;
(2)求證:DE是⊙O的切線;
(3)求線段DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,點(diǎn)M、N分別在線段AC、AB上,將△ANM沿直線MN折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)D恰好落在線段BC上,當(dāng)△DCM為直角三角形時(shí),折痕MN的長(zhǎng)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“震災(zāi)無(wú)情人有情”.民政局將全市為四川受災(zāi)地區(qū)捐贈(zèng)的物資打包成件,其中帳篷和食品共320件,帳篷比食品多80件.
(1)求打包成件的帳篷和食品各多少件?
(2)現(xiàn)計(jì)劃租用甲、乙兩種貨車(chē)共8輛,一次性將這批帳篷和食品全部運(yùn)往受災(zāi)地區(qū).已知甲種貨車(chē)最多可裝帳篷40件和食品10件,乙種貨車(chē)最多可裝帳篷和食品各20件.則民政局安排甲、乙兩種貨車(chē)時(shí)有幾種方案?請(qǐng)你幫助設(shè)計(jì)出來(lái).
(3)在第(2)問(wèn)的條件下,如果甲種貨車(chē)每輛需付運(yùn)輸費(fèi)4000元,乙種貨車(chē)每輛需付運(yùn)輸費(fèi)3600元.民政局應(yīng)選擇哪種方案可使運(yùn)輸費(fèi)最少?最少運(yùn)輸費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,過(guò)點(diǎn)P(0,a)作直線l分別交于點(diǎn)M、N,
(1)若m=4,MN∥x軸,,求n的值;
(2)若a=5,PM=PN,點(diǎn)M的橫坐標(biāo)為3,求m-n的值;
(3)如圖,若m=4,n=-6,點(diǎn)A(d,0)為x軸的負(fù)半軸上一點(diǎn),B為x軸上點(diǎn)A右側(cè)一點(diǎn),AB=4,以AB為一邊向上作正方形ABCD,若正方形ABCD與都有交點(diǎn),求d的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=8,BC=10,以B為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交BA、BC于點(diǎn)M和N,再分別以M、N為圓心,大于MN長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,連結(jié)BP并延長(zhǎng)交AC于點(diǎn)D,若△BDC的面積為20,則△ABD的面積為( )
A.20B.18C.16D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)和函數(shù)(m是常數(shù),且)的圖象可能是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=-x2+2x+3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D,直線CD與x軸交于點(diǎn)E.
(1)求A、B的坐標(biāo);
(2)求點(diǎn)E的坐標(biāo);
(3)過(guò)線段OB的中點(diǎn)N作x軸的垂線并交直線CD于點(diǎn)F,則直線NF上是否存在點(diǎn)M,使得點(diǎn)M到直線CD的距離等于點(diǎn)M到原點(diǎn)O的距離?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為實(shí)現(xiàn)2020年全面脫貧的目標(biāo),我國(guó)實(shí)施“精準(zhǔn)扶貧”戰(zhàn)略,從而使貧困戶的生活條件得到改善,生活質(zhì)量明顯提高.為了切實(shí)關(guān)注、關(guān)愛(ài)貧困家庭學(xué)生,某校對(duì)全校各班貧困家庭學(xué)生的人數(shù)情況進(jìn)行了統(tǒng)計(jì),統(tǒng)計(jì)發(fā)現(xiàn)班上貧困家庭學(xué)生人數(shù)分別有2名,3名,4名,5名,6名,共五種情況.并將其制成了如下兩幅不完整的統(tǒng)計(jì)圖:
請(qǐng)回答下列問(wèn)題:
(1)求該校一共有班級(jí)________個(gè);在扇形統(tǒng)計(jì)圖中,貧困家庭學(xué)生人數(shù)有5名的班級(jí)所對(duì)應(yīng)扇形圓心角為________°;
(2)將條形圖補(bǔ)充完整;
(3)甲、乙、丙是貧困生中的三名學(xué)生,學(xué)校決定從這三名學(xué)生中隨機(jī)抽取兩名代表到市里進(jìn)行發(fā)言,用列表法或畫(huà)樹(shù)狀圖法,求同時(shí)抽到甲,乙兩名學(xué)生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com