【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖③所示,圖象過點(﹣1,0),對稱軸為直線x=2,則下 列結論中正確的個數(shù)有( )
①4a+b=0;
②9a+3b+c<0;
③若點A(﹣3,y1),點B(﹣,y2),點C(5,y3)在該函數(shù)圖象上,則y1<y3<y2;
④若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2 , 且x1<x2 , 則x1<﹣1<5<x2 .
A. 1個 B. 2個 C. 3個 D. 4個
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+2圖象與反比例函數(shù)y2=圖象相交于A,B兩點,已知點B的坐標為(3,﹣1).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)請直接寫出不等式kx﹣≤﹣2的解集;
(3)點C為x軸上一動點,當S△ABC=3時,求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ACB和△ECD中,∠ACB=∠ECD=a,且AC=BC,EC=DC,AE、BD交于P點,連CP
(1)求證:△ACE≌△BCD
(2)求∠APC的度數(shù)(用含a的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a>0,c<0)交x軸于點A,B,交y軸于點C,設過點A,B,C三點的圓與y軸的另一個交點為D.
(1)如圖1,已知點A,B,C的坐標分別為(﹣2,0),(8,0),(0,﹣4);
①求此拋物線的表達式與點D的坐標;
②若點M為拋物線上的一動點,且位于第四象限,求△BDM面積的最大值;
(2)如圖2,若a=1,求證:無論b,c取何值,點D均為定點,求出該定點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角坐標系中的網(wǎng)格由單位正方形構成,中,點坐標為,點坐標為,點坐標為.
(1)的長為_______;
(2)求證:;
(3)若以、、及點為頂點的四邊形為平行四邊形,寫出點在第一象限時的坐標______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為落實立德樹人根本任務,培養(yǎng)德智體美勞全面發(fā)展的社會主義接班人,育才學校在設立學生獎學金時規(guī)定:每學期對學生的德智體美勞五個方面進行三次綜合素質(zhì)評價,分別是:假期綜合素質(zhì)評價、期中綜合素質(zhì)評價、期末綜合素質(zhì)評價,八年級(1)班的小明和八年級(2)班的小亮兩位同學同時進入一等獎學金測評,他們的三次綜合素質(zhì)評價成績?nèi)缦卤恚?/span>
假期綜合素質(zhì)評價成績 | 期中綜合素質(zhì)評價成績 | 期末綜合素質(zhì)評價成績 | |
小明 | 96 | 91 | 92 |
小亮 | 95 | 93 | 91 |
(1)如果從三次綜合素質(zhì)評價成績穩(wěn)定性的角度來看,誰可以得一等獎學金?請你通過計算回答;
(2)如果假期綜合素質(zhì)評價成績、期中綜合素質(zhì)評價成績、期末綜合素質(zhì)評價成績按的比例計入最終成績,誰可以得一等獎學金?請你通過計算回答.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=+mx+3與x軸交于A,B兩點,與y軸交于點C,點B的坐標為(3,0),
(1)求m的值及拋物線的頂點坐標.
(2)點P是拋物線對稱軸l上的一個動點,當PA+PC的值最小時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在長方形ABCD中,AB=8cm,BC=12cm,E為AB的中點,動點P在線段BC上以4cm/s的速度由點B向C運動,同時,動點Q在線段CD上由點C向點D運動,設運動時間為t(s).
(1)當t=2時,求△EBP的面積;
(2)若動點Q以與動點P不同的速度運動,經(jīng)過多少秒,△EBP與△CQP全等?此時點Q的速度是多少?
(3)若動點Q以(2)中的速度從點C出發(fā),動點P以原來的速度從點B同時出發(fā),都逆時針沿長方形ABCD的四邊形運動,經(jīng)過多少秒,點P與點Q第一次在長方形ABCD的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】夏季空調(diào)銷售供不應求,某空調(diào)廠接到一份緊急訂單,要求在10天內(nèi)(含10天)完成任務,為提高生產(chǎn)效率,工廠加班加點,接到任務的第一天就生產(chǎn)了空調(diào)42臺,以后每天生產(chǎn)的空調(diào)都比前一天多2臺,由于機器損耗等原因,當日生產(chǎn)的空調(diào)數(shù)量達到50臺后,每多生產(chǎn)一臺,當天生產(chǎn)的所有空調(diào),平均每臺成本就增加20元.
(1)設第天生產(chǎn)空調(diào)臺,直接寫出與之間的函數(shù)解析式,并寫出自變量的取值范圍.
(2)若每臺空調(diào)的成本價(日生產(chǎn)量不超過50臺時)為2000元,訂購價格為每臺2920元,設第天的利潤為元,試求與之間的函數(shù)解析式,并求工廠哪一天獲得的利潤最大,最大利潤是多少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com