【題目】如圖,矩形ABCD中,AB4BC3,PBA邊上從BA運(yùn)動(dòng),過(guò)作PEPC,交AD于點(diǎn)E

1)如圖1,當(dāng)EPPC時(shí),求線段AE的長(zhǎng)度;

2)如圖2,當(dāng)PAB中點(diǎn)時(shí),求證:CP平分∠ECB;

3)若⊙O直徑為CE,則在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,是否存在⊙OAB相切,若存在,求出⊙O的半徑:若不存在,請(qǐng)說(shuō)明理由.

【答案】11;(2)見(jiàn)解析;(3)存在,⊙O的半徑為

【解析】

1)如圖1,先證明∠PEA=CPB,則根據(jù)“AAS”可判斷△APE≌△BCP,從而得到AP=BC=3,AE=PB,然后計(jì)算出PB得到AE的長(zhǎng);
2)如圖2,先計(jì)算出PC=,再證明△APE∽△BCP,利用相似比計(jì)算出PE=,利用三角函數(shù)的定義得到tanECP==tanBCP,從而可判斷∠ECP=BCP;
3)連接OP,如圖3,根據(jù)切線的判定法,當(dāng)OPAB時(shí),AB與⊙O相切,再證明AP=PB=2,則可利用由(2)的結(jié)論得到CP=EP=,然后利用勾股定理計(jì)算出CE即可得到⊙O的半徑.

(1)解:如圖1,

PEPC,

∴∠EPC90°,

∴∠APE+CPB90°,

而∠APE+PEA90°,

∴∠PEA=∠CPB,

APEBCP

,

∴△APE≌△BCPAAS),

APBC3,AEPB,

PBABAP431,

AE1;

2)證明:如圖2,

PAB中點(diǎn),

APBP2,

PC,

∵∠PEA=∠BPC,∠A=∠B90°

∴△APE∽△BCP,

,即

解得:PE,

RtPCE中,tanECP,

RtPCB中,tanBCP

∴∠ECP=∠BCP,

CP平分∠ECB

3)解:存在.連接OP,如圖3

當(dāng)OPAB時(shí),AB與⊙O相切,

OEOC,

APPB2,

由(2)得CPEP,

RtPCE中,CE,

∴⊙O的半徑為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)D為拋物線頂點(diǎn),點(diǎn)E在拋物線上,點(diǎn)Fx軸上,四邊形OCEF為矩形,且OF2,EF3,則ABD的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA6,PB8PC10.若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△PAB

1)求點(diǎn)P與點(diǎn)P′之間的距離;

2)求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)內(nèi)一點(diǎn)分別作三邊的平行線,形成三個(gè)小三角形①、②、③,如果這三個(gè)小三角形面積分別為1、4、9,則的面積為____________

.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣1,﹣1)、B(﹣3,﹣2C0,﹣3

1)以點(diǎn)C為旋轉(zhuǎn)中心將△ABC順時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1,則A1的坐標(biāo)為   ;

2)以點(diǎn)O為位似中心,將△ABC放大為原來(lái)的2倍,得到△A2B2C2,請(qǐng)?jiān)诰W(wǎng)格中畫(huà)出△A2B2C2;

3)若網(wǎng)格單位長(zhǎng)度為1,求(1)中AB掃過(guò)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣4,3)、B(﹣3,1)、C(﹣1,3).

(1)請(qǐng)按下列要求畫(huà)圖:

ABC先向右平移4個(gè)單位長(zhǎng)度、再向上平移2個(gè)單位長(zhǎng)度,得到A1B1C1,畫(huà)出A1B1C1;

②△A2B2C2ABC關(guān)于原點(diǎn)O成中心對(duì)稱,畫(huà)出A2B2C2

(2)在(1)中所得的A1B1C1A2B2C2關(guān)于點(diǎn)M成中心對(duì)稱,請(qǐng)直接寫(xiě)出對(duì)稱中心M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A1,1),B4,2),C3,4).

1)請(qǐng)畫(huà)出△ABC向左平移5個(gè)單位長(zhǎng)度后得到的△A1B1C1;

2)請(qǐng)畫(huà)出△ABC關(guān)于原點(diǎn)對(duì)稱的△A2B2C2;并寫(xiě)出點(diǎn)A2、B2、C2坐標(biāo);

3)請(qǐng)畫(huà)出△ABCO逆時(shí)針旋轉(zhuǎn)90°后的△A3B3C3;并寫(xiě)出點(diǎn)A3、B3、C3坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市舉行知識(shí)大賽,A校、B校各派出5名選手組成代表隊(duì)參加決賽,兩校派出選手的決賽成績(jī)?nèi)鐖D所示.

根據(jù)圖示填寫(xiě)下表:

平均數(shù)

中位數(shù)

眾數(shù)

A

______

85

______

B

85

______

100

結(jié)合兩校成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)學(xué)校的決賽成績(jī)較好;

計(jì)算兩校決賽成績(jī)的方差,并判斷哪個(gè)學(xué)校代表隊(duì)選手成績(jī)較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交x軸于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)).

1)求點(diǎn)A,B的坐標(biāo),并根據(jù)該函數(shù)圖象寫(xiě)出y0時(shí)x的取值范圍;

2)把點(diǎn)B向上平移m個(gè)單位得點(diǎn)B1.若點(diǎn)B1向左平移n個(gè)單位,將與該二次函數(shù)圖象上的點(diǎn)B2重合;若點(diǎn)B1向左平移(n6)個(gè)單位,將與該二次函數(shù)圖象上的點(diǎn)B3重合.已知m0n0,求m,n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案