【題目】對于坐標(biāo)平面內(nèi)的點(diǎn),現(xiàn)將該點(diǎn)向右平移1個單位,再向上平移2的單位,這種點(diǎn)的運(yùn)動稱為點(diǎn)A的斜平移,如點(diǎn)P(2,3)經(jīng)1次斜平移后的點(diǎn)的坐標(biāo)為(3,5),已知點(diǎn)A的坐標(biāo)為(1,0).
(1)分別寫出點(diǎn)A經(jīng)1次,2次斜平移后得到的點(diǎn)的坐標(biāo).
(2)如圖,點(diǎn)M是直線l上的一點(diǎn),點(diǎn)A關(guān)于點(diǎn)M的對稱點(diǎn)的點(diǎn)B,點(diǎn)B關(guān)于直線l的對稱軸為點(diǎn)C.
①若A、B、C三點(diǎn)不在同一條直線上,判斷△ABC是否是直角三角形?請說明理由.
②若點(diǎn)B由點(diǎn)A經(jīng)n次斜平移后得到,且點(diǎn)C的坐標(biāo)為(7,6),求出點(diǎn)B的坐標(biāo)及n的值.
【答案】
(1)
解:∵點(diǎn)P(2,3)經(jīng)1次斜平移后的點(diǎn)的坐標(biāo)為(3,5),點(diǎn)A的坐標(biāo)為(1,0),
∴點(diǎn)A經(jīng)1次平移后得到的點(diǎn)的坐標(biāo)為(2,2),點(diǎn)A經(jīng)2次平移后得到的點(diǎn)的坐標(biāo)(3,4)
(2)
解:①連接CM,如圖1:
由中心對稱可知,AM=BM,
由軸對稱可知:BM=CM,
∴AM=CM=BM,
∴∠MAC=∠ACM,∠MBC=∠MCB,
∵∠MAC+∠ACM+∠MBC+∠MCB=180°,
∴∠ACM+∠MCB=90°,
∴∠ACB=90°,
∴△ABC是直角三角形;
②延長BC交x軸于點(diǎn)E,過C點(diǎn)作CF⊥AE于點(diǎn)F,如圖2:
∵A(1,0),C(7,6),
∴AF=CF=6,
∴△ACF是等腰直角三角形,
由①得∠ACE=90°,
∴∠AEC=45°,
∴E點(diǎn)坐標(biāo)為(13,0),
設(shè)直線BE的解析式為y=kx+b,
∵C,E點(diǎn)在直線上,
可得: ,
解得: ,
∴y=﹣x+13,
∵點(diǎn)B由點(diǎn)A經(jīng)n次斜平移得到,
∴點(diǎn)B(n+1,2n),由2n=﹣n﹣1+13,
解得:n=4,
∴B(5,8)
【解析】(1)根據(jù)平移的性質(zhì)得出點(diǎn)A平移的坐標(biāo)即可;(2)①連接CM,根據(jù)中心和軸對稱的性質(zhì)和直角三角形的判定解答即可;②延長BC交x軸于點(diǎn)E,過C點(diǎn)作CF⊥AE于點(diǎn)F,根據(jù)待定系數(shù)法得出直線的解析式進(jìn)而解答即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=3ax2+2bx+c
(1)若a=b=1,c=﹣1求該拋物線與x軸的交點(diǎn)坐標(biāo);
(2)若a= ,c=2+b且拋物線在﹣2≤x≤2區(qū)間上的最小值是﹣3,求b的值;
(3)若a+b+c=1,是否存在實(shí)數(shù)x,使得相應(yīng)的y的值為1,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn).點(diǎn)M是AB邊上一動點(diǎn)(不與點(diǎn)A重合),延長ME交射線CD于點(diǎn)N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為時,四邊形AMDN是矩形;
②當(dāng)AM的值為時,四邊形AMDN是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】快、慢兩車分別從相距180千米的甲、乙兩地同時出發(fā),沿同一路線勻速行駛,相向而行,快車到達(dá)乙地停留一段時間后,按原路原速返回甲地.慢車到達(dá)甲地比快車到達(dá)甲地早 小時,慢車速度是快車速度的一半,快、慢兩車到達(dá)甲地后停止行駛,兩車距各自出發(fā)地的路程y(千米)與所用時間x(小時)的函數(shù)圖象如圖所示,請結(jié)合圖象信息解答下列問題:
(1)請直接寫出快、慢兩車的速度;
(2)求快車返回過程中y(千米)與x(小時)的函數(shù)關(guān)系式;
(3)兩車出發(fā)后經(jīng)過多長時間相距90千米的路程?直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與x軸交于點(diǎn)A(1,0),與y軸交于點(diǎn)B(0,﹣2).
(1)求直線AB的解析式;
(2)若直線AB上的點(diǎn)C在第一象限,且S△BOC=2,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了了解學(xué)生的體育鍛煉情況,隨機(jī)抽查了部分學(xué)生一周參加體育鍛煉的時間,得到如圖的條形統(tǒng)計圖,根據(jù)圖形解答下列問題:
(1)這次抽查了名學(xué)生;
(2)所抽查的學(xué)生一周平均參加體育鍛煉多少小時?
(3)已知該校有1200名學(xué)生,估計該校有多少名學(xué)生一周參加體育鍛煉的時間超過6小時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:45°<∠A<90°,則下列各式成立的是( )
A.sinA=cosA
B.sinA>cosA
C.sinA>tanA
D.sinA<cosA
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB與⊙O相切于點(diǎn)B,BC為⊙O的弦,OC⊥OA,OA與BC相交于點(diǎn)P.
(1)求證:AP=AB;
(2)若OB=4,AB=3,求線段BP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com