如圖,AB是斜靠在墻壁的梯子,梯腳點(diǎn)B距墻角點(diǎn)C有1.4m,,梯子上的點(diǎn)D距墻壁1.2m,梯子每級(jí)之間的距離(如BD)為0.5m,則梯子的長(zhǎng)度是______米。

A. 2          B. 3         C. 4           D. 5
B

試題分析:由題意可知運(yùn)用相似三角形的基本知識(shí)可以得到,,故選B
點(diǎn)評(píng):解答本題的的關(guān)鍵是熟練掌握有兩組角對(duì)應(yīng)相等的兩個(gè)三角形相似;兩組邊對(duì)應(yīng)成比例且?jiàn)A角相等的三角形相似.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AC向點(diǎn)C以1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿邊CB向點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過(guò)點(diǎn)P作PD∥BC,交AB于點(diǎn)D,連接PQ分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t≥0).
(1)直接用含t的代數(shù)式分別表示:QB= _________ ,PD= _________ 
(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說(shuō)明理由.并探究如何改變Q的速度(勻速運(yùn)動(dòng)),使四邊形PDBQ在某一時(shí)刻為菱形,求點(diǎn)Q的速度;
(3)如圖2,在整個(gè)運(yùn)動(dòng)過(guò)程中,求出線段PQ中點(diǎn)M所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在中,,.P是AB上的動(dòng)點(diǎn)(P異于A、B),過(guò)點(diǎn)P的直線截,使截得的三角形與相似,當(dāng)            時(shí),截得的三角形面積為面積的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在一張比例尺為1:10000的地圖上,我校的周長(zhǎng)為18cm,則我校的實(shí)際周長(zhǎng)為          。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,為測(cè)量學(xué)校圍墻外直立電線桿AB的高度,小亮在操場(chǎng)上點(diǎn)C處直立高3m的竹竿CD,然后退到點(diǎn)E處,此時(shí)恰好看到竹竿頂端D與電線桿頂端B重合;小亮又在點(diǎn)C1處直立高3m的竹竿C1D1,然后退到點(diǎn)E1處,此時(shí)恰好看到竹竿頂端D1與電線桿頂端B重合。小亮的眼睛離地面高度EF=1.5m,量得CE=2m,EC1=6m,C1E1=3m。
(1)△FDM∽△        ,△F1D1N∽△      
(2)求電線桿AB的高度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在正方形網(wǎng)格上,若使△ABC與△PBD相似,則點(diǎn)P應(yīng)在
A.P1B.P2
C.P3D.P4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知線段AB=16cm,點(diǎn)C是AB的黃金分割點(diǎn),且AC>BC,則AC=______cm.
A.16-8B.8-8C.8-8D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,邊長(zhǎng)12的正方形ABCD中,有一個(gè)小正方形EFGH,其中E、F、G分別在AB、BC、FD上. 若BF=3,則小正方形的邊長(zhǎng)為

A.        B.        C. 5      D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,等腰三角形ABC中,若∠A=∠B=∠DPE,

(1)求證:△APD∽△BEP;
(2)若,試求出AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案