【題目】如圖,已知、是一次函數的圖象與反比例函數的圖象的兩個交點.
(1)求反比例函數和一次函數的表達式;
(2)根據圖象寫出使一次函數的函數值小于反比例函數的函數值的x的取值范圍.
科目:初中數學 來源: 題型:
【題目】已知拋物線.
(1)該拋物線的對稱軸是直線___________,頂點坐標是___________;
(2)選取適當的數據填入下表,并在圖中的直角坐標系內畫出該拋物線的圖像;
(3)根據圖像回答,有實數根,此時的取值范圍。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數的圖象如圖所示,點位于坐標原點O, 在y軸的正半軸上,點在二次函數第一象限的圖象上,若△,△,△…,都為等邊三角形,則點的坐標為_____
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀以下材料:
對數的創(chuàng)始人是蘇格蘭數學家納皮爾(J.Nplcr,1550﹣1617年),納皮爾發(fā)明對數是在指數書寫方式之前,直到18世紀瑞士數學家歐拉(Evlcr,1707﹣1783年)才發(fā)現指數與對數之間的聯系.
對數的定義:一般地,若(且),那么叫做以為底的對數,記作,比如指數式可以轉化為對數式,對數式,可以轉化為指數式.
我們根據對數的定義可得到對數的一個性質:
(,,,),理由如下:
設,,則,,
∴,由對數的定義得
又∵
∴
根據閱讀材料,解決以下問題:
(1)將指數式轉化為對數式________;
(2)求證:(,,,)
(3)拓展運用:計算________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】四位同學在研究函數y=x2+bx+c(b,c是常數)時,甲發(fā)現當x=1時,函數有最小值;乙發(fā)現﹣1是方程x2+bx+c=0的一個根;丙發(fā)現函數的最小值為3;丁發(fā)現當x=2時,y=4,已知這四位同學中只有一位發(fā)現的結論是錯誤的,則該同學是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長為2cm的等邊△ABC的邊BC在直線l上,兩條距離為1cm的平行直線a和b垂直于直線l,直線a、b同時向右移動(直線a的起始位置在B點),運動速度為1cm/s,直到直線a到達C點時停止.在a、b向右移動的過程中,記△ABC夾在a和b之間的部分的面積為S,求S與t的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列圖形都是由同樣大小的菱形按照一定規(guī)律組成的,請根據排列規(guī)律完成下列問題:
(1)填寫下表:
圖形序號 | 菱形個數個 |
| 3 |
| 7 |
| ______ |
| ______ |
|
|
(2)根據表中規(guī)律猜想,圖n中菱形的個數用含n的式子表示,不用說理;
(3)是否存在一個圖形恰好由91個菱形組成?若存在,求出圖形的序號;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一名在校大學生利用“互聯網+”自主創(chuàng)業(yè),銷售一種產品,這種產品的成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產品的銷售價不高于16元/件,市場調查發(fā)現,該產品每天的銷售量(件與銷售價(元/件)之間的函數關系如圖所示.
(1)求與之間的函數關系式,并寫出自變量的取值范圍;
(2)求每天的銷售利潤W(元與銷售價(元/件)之間的函數關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com