【題目】如圖,已知∠1+∠2﹦180°,∠3﹦∠B,則DE∥BC,下面是王華同學的推導(dǎo)過程﹐請你幫他在括號內(nèi)填上推導(dǎo)依據(jù)或內(nèi)容. 證明:
∵∠1+∠2﹦180(已知),
∠1﹦∠4),
∴∠2﹢﹦180°.
∴EH∥AB ().
∴∠B﹦∠EHC().
∵∠3﹦∠B(已知)
∴∠3﹦∠EHC().
∴DE∥BC().

【答案】對頂角相等;∠4;同旁內(nèi)角互補,兩直線平行;兩直線平行,同位角相等;等量代換;內(nèi)錯角相等,兩直線平行
【解析】證明:∵∠1+∠2﹦180°(已知),∠1﹦∠4 (對頂角相等), ∴∠2﹢∠4﹦180°.
∴EH∥AB ( 同旁內(nèi)角互補,兩直線平行).
∴∠B﹦∠EHC(兩直線平行,同位角相等).
∵∠3﹦∠B(已知)
∴∠3﹦∠EHC( 等量代換).
∴DE∥BC(內(nèi)錯角相等,兩直線平行).
所以答案是:對頂角相等;∠4; 同旁內(nèi)角互補,兩直線平行;兩直線平行,同位角相等;等量代換;內(nèi)錯角相等,兩直線平行.
【考點精析】掌握平行線的判定與性質(zhì)是解答本題的根本,需要知道由角的相等或互補(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為(  )

A.180°
B.360°
C.540°
D.720°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器超市銷售A、B兩種不同型號的電風扇,每種型號電風扇的購買單價分別為每臺310元,460元.

(1)若某單位購買A,B兩種型號的電風扇共50臺,且恰好支出20000元,求A,B兩種型號電風扇各購買多少臺?

(2)若購買A,B兩種型號的電風扇共50臺,且支出不超過18000元,求A種型號電風扇至少要購買多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列由四舍五入得到的近似數(shù),各精確到哪一位?

(1)6.208;

(2)0.050 70;

(3)45.3萬;

(4)9.80×104.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】命題如果a2=b2,那么|a|=|b|”的逆命題是________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=kx+b,其中常數(shù)k>0,b<0,那么這個函數(shù)的圖象不經(jīng)過的象限是(  )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了全面了解學生的學習、生活及家庭的基本情況,加強學校、家庭的聯(lián)系,梅燦中學積極組織全體教師開展“課外訪萬家活動”,王老師對所在班級的全體學生進行實地家訪,了解到每名學生家庭的相關(guān)信息,先從中隨機抽取15名學生家庭的年收入情況,數(shù)據(jù)如表:

(1)求這15名學生家庭年收入的平均數(shù)、中位數(shù)、眾數(shù);
(2)你認為用(1)中的哪個數(shù)據(jù)來代表這15名學生家庭年收入的一般水平較為合適?請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:
(1)8(x+1)2﹣50=0
(2) (5x+3)3+32=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,直線MN分別交AB、CD于點E,F(xiàn),EG平分∠AEF,EG⊥FG于點G,若∠BEM=60°,則∠CFG=

查看答案和解析>>

同步練習冊答案