【題目】如圖,AB∥CD,直線(xiàn)MN分別交AB、CD于點(diǎn)E,F(xiàn),EG平分∠AEF,EG⊥FG于點(diǎn)G,若∠BEM=60°,則∠CFG=

【答案】60°
【解析】解:∵AB∥CD, ∴∠AEF+∠CFE=180°,
∵∠AEF=∠BEM=60°,
∴∠CFE=120°,
∵EG平分∠AEF,
∴∠GEF= ∠AEF=30°,
∵EG⊥FG,
∴∠EGF=90°,
∴∠GFE=90°﹣∠GEF=60°,
∴∠CFG=∠CEF﹣∠GFE=60°.
所以答案是:60°.
【考點(diǎn)精析】關(guān)于本題考查的垂線(xiàn)的性質(zhì)和平行線(xiàn)的性質(zhì),需要了解垂線(xiàn)的性質(zhì):1、過(guò)一點(diǎn)有且只有一條直線(xiàn)與己知直線(xiàn)垂直.2、垂線(xiàn)段最短;兩直線(xiàn)平行,同位角相等;兩直線(xiàn)平行,內(nèi)錯(cuò)角相等;兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1+∠2﹦180°,∠3﹦∠B,則DE∥BC,下面是王華同學(xué)的推導(dǎo)過(guò)程﹐請(qǐng)你幫他在括號(hào)內(nèi)填上推導(dǎo)依據(jù)或內(nèi)容. 證明:
∵∠1+∠2﹦180(已知),
∠1﹦∠4),
∴∠2﹢﹦180°.
∴EH∥AB ().
∴∠B﹦∠EHC().
∵∠3﹦∠B(已知)
∴∠3﹦∠EHC().
∴DE∥BC().

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)Q為坐標(biāo)系上任意一點(diǎn),某圖形上的所有點(diǎn)在∠Q的內(nèi)部(含角的邊),這時(shí)我們把∠Q的最小角叫做該圖形的視角.如圖1,矩形ABCD,作射線(xiàn)OAOB,則稱(chēng)∠AOB為矩形ABCD的視角.

1如圖1,矩形ABCD,A1),B1),C,3),D,3),直接寫(xiě)出視角∠AOB的度數(shù);

2)在(1)的條件下,在射線(xiàn)CB上有一點(diǎn)Q,使得矩形ABCD的視角∠AQB=60°,求點(diǎn)Q的坐標(biāo);

3)如圖2,P的半徑為1,點(diǎn)P1, ),點(diǎn)Qx軸上,且⊙P的視角∠EQF的度數(shù)大于60°,若Qa,0),a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商場(chǎng)某種商品平均每天可銷(xiāo)售30件,每件盈利50元.為了盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施. 經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價(jià)1元,商場(chǎng)平均每天可多售出 2件.據(jù)此規(guī)律計(jì)算:每件商品降價(jià)
元時(shí),商場(chǎng)日盈利可達(dá)到2100元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,ABCD為長(zhǎng)方形,其中點(diǎn)A、C坐標(biāo)分別為(﹣4,2)、(1,﹣4),且AD∥x軸,交y軸于M點(diǎn),AB交x軸于N.

(1)求B、D兩點(diǎn)坐標(biāo)和長(zhǎng)方形ABCD的面積;
(2)一動(dòng)點(diǎn)P從A出發(fā),以 個(gè)單位/秒的速度沿AB向B點(diǎn)運(yùn)動(dòng),在P點(diǎn)運(yùn)動(dòng)過(guò)程中,連接MP、OP,請(qǐng)直接寫(xiě)出∠AMP、∠MPO、∠PON之間的數(shù)量關(guān)系;
(3)是否存在某一時(shí)刻t,使三角形AMP的面積等于長(zhǎng)方形面積的 ?若存在,求t的值并求此時(shí)點(diǎn)P的坐標(biāo);若不存在說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列各點(diǎn)中,一定在二次函數(shù)y=(x1)2+2圖象上的是(

A.(1,2)B.(02)C.(1,2)D.(1,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P的坐標(biāo)為(m1,m22m3,則點(diǎn)P到直線(xiàn)y=-5距離的最小值為( ).

A.0.5B.1C.1.5D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中小正方形的邊長(zhǎng)為1,△ABC的三個(gè)頂點(diǎn)都在小正方形的格點(diǎn)上,求:
(1)△ABC的面積;
(2)邊AC的長(zhǎng);
(3)點(diǎn)B到AC邊的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+bx+4x軸于A(﹣2,0)B(8,0)兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)D是線(xiàn)段OB上一動(dòng)點(diǎn),連接CD,將線(xiàn)段CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段DE,過(guò)點(diǎn)E作直線(xiàn)lx軸于H,過(guò)點(diǎn)CCFlF

(1)求拋物線(xiàn)解析式;

(2)如圖2,當(dāng)點(diǎn)F恰好在拋物線(xiàn)上時(shí),求線(xiàn)段OD的長(zhǎng);

(3)(2)的條件下:

①連接DF,求tanFDE的值;

②試探究在直線(xiàn)l上,是否存在點(diǎn)G,使∠EDG=45°?若存在,請(qǐng)直接寫(xiě)出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案