【題目】如圖,AOBCOD均為等腰直角三角形,AOBCOD90°,點(diǎn)C、D分別在邊OAOB上的點(diǎn).連接AD,BC,點(diǎn)HBC中點(diǎn),連接OH

1)如圖1,求證:OHAD,OHAD

2)將COD繞點(diǎn)O旋轉(zhuǎn)到圖2所示位置時(shí),⑴中結(jié)論是否仍成立?若成立,證明你的結(jié)論;若不成立,請(qǐng)說明理由.

【答案】1)見解析;(2)成立,證明見解析

【解析】

1)只要證明AOD≌△BOCSAS),即可解決問題;

2)如圖2中,結(jié)論:OH=AD,OHAD.延長(zhǎng)OHE,使得HE=OH,連接BE,證明BEH≌△CHOSAS),可得OE=2OH,∠EBC=BCO,證明BEO≌△ODASAS)即可解決問題;

1)∵△OABOCD為等腰直角三角形,∠AOB=∠COD90°

OCODOAOB

AODBOC

∴△AOD≌△BOCSAS

∴∠ADO=∠BCO,∠OAD=∠OBC,BCAD

∵點(diǎn)HBC的中點(diǎn),∠AOB90°

OHHB

∴∠OBH=∠HOB=∠OAD,OH

∵∠OAD+∠ADO90°

∴∠ADO+∠BOH90°

OHAD

2)(1)中結(jié)論成立;如圖,延長(zhǎng)OHE,使得HEOH,連接BE,CE

CHBH

∴四邊形BOCE是平行四邊形

BEOCEBOC,OHOE

∴∠EBO+∠COB180°

∵∠COB+∠BOD90°,∠BOD+∠190°

∴∠1=∠COB

∵∠AOD+∠1180°

∴∠AOD=∠EBO

∴△BEO≌△ODA

∴∠EOB=∠DAO,OEAD

OHAD

∴∠DAO+∠AOH=∠EOB+∠AOH90°

OHAD

【點(diǎn)晴】

本題屬于幾何變換綜合題,考查了旋轉(zhuǎn)變換,等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),三角形三邊關(guān)系等知識(shí),構(gòu)造全等三角形解決問題是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E,FM分別是正方形ABCD三邊的中點(diǎn),CEDF交于N,連接AM,ANMN對(duì)于下列四個(gè)結(jié)論:①AM∥CE;②DF⊥CE;③AN=BC;④∠AND=∠CMN 其中錯(cuò)誤的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,分別沿矩形紙片ABCD和正方形EFGH紙片的對(duì)角線ACEG剪開,拼成如圖2所示的平行四邊形KLMN,若中間空白部分恰好是正方形OPQR

1)若AB=m,BC=n,用含mn的代數(shù)式表示正方形EFGH的邊長(zhǎng);

2)若正方形EFGH的面積為25,求平行四邊形KLMN的面積;

3)平行四邊形KLMN是否能為菱形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連接BD,∠BAD=105°,∠DBC=75°.

(1)求證:BDCD;

(2)若圓O的半徑為3,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生對(duì)各種球類運(yùn)動(dòng)的喜愛程度,小明采取隨機(jī)抽樣的方法對(duì)他所在學(xué)校的部分學(xué)生進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一種項(xiàng)目),對(duì)調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)后,繪制了下面的統(tǒng)計(jì)圖(1)和圖(2).

1)此次被調(diào)查的學(xué)生共有___人,m_____

2)求喜歡“乒乓球”的學(xué)生的人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若該校有2000名學(xué)生,估計(jì)全校喜歡“足球”的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E,F分別是正方形ABCD的邊CD,AD上的點(diǎn),且CE=DF,AE、BF相交于點(diǎn)O,下列結(jié)論:①AE=BF;②AEBF;③AO=OE;④SAOB=S四邊形DEOF其中正確的結(jié)論是(

A.①②④B.②③④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知,,,的面積為3.

1)直接寫出 , , .

2)如圖,設(shè)軸于,軸于點(diǎn),、的角平分線交于點(diǎn),求的大小.

3)如圖,點(diǎn)延長(zhǎng)線上動(dòng)點(diǎn),軸于點(diǎn)平分,直線,交于點(diǎn)平分軸于點(diǎn),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分)周末,小英與她的父親、母親計(jì)劃從西安外出旅游,初步選擇了位于西安東線的景點(diǎn):兵馬俑, :華山,以及位于西線的景點(diǎn):太白山, :法門寺, :楊凌現(xiàn)代農(nóng)業(yè)示范園.由于時(shí)間倉促,他們只能去其中的兩個(gè)景點(diǎn),并且希望兩個(gè)景點(diǎn)能位于一條線路上.到底去哪兩個(gè)景點(diǎn),三人意見不統(tǒng)一.在這種情況下,小英父親建議,用小英學(xué)過的摸卡片游戲來決定.規(guī)則如下:在五個(gè)背面完全相同的卡片上寫上五個(gè)景點(diǎn)的代號(hào),然后洗勻,背面朝上放在桌面上,讓小英隨機(jī)摸出一張,不放回,然后讓小英母親再隨機(jī)摸出一張.照上面的規(guī)則,請(qǐng)你解答下列問題:

)己知小英的理想旅游景點(diǎn)是兵馬俑,求小英摸出寫有的卡片的概率.

)求小英和母親摸出的景點(diǎn)位于一條線上(東線或西線)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為3EF 分別是AB,BC邊上的點(diǎn),且∠EDF=45°.△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.

1)求證:EF=FM

2)當(dāng)AE=1時(shí),求EF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案