【題目】已知二次函數(shù)yx2+2x3

1)把函數(shù)配成yaxh2+k的形式;

2)求函數(shù)與x軸交點(diǎn)坐標(biāo);

3)用五點(diǎn)法畫函數(shù)圖象

x

y

4)當(dāng)y0時(shí),則x的取值范圍為_____

5)當(dāng)﹣3x0時(shí),則y的取值范圍為_____

【答案】1y=(x+124

(2) (﹣3,0)和(1,0

(3)

(4) x<﹣3x1

(5)4≤y0

【解析】

(1)直接化簡函數(shù)解析式即可得到所求(2)令y=0就出x的值即可得到結(jié)果(3)先作表格,找出對(duì)應(yīng)點(diǎn)的坐標(biāo),再根據(jù)坐標(biāo)畫出描點(diǎn)連線畫出函數(shù)圖像(4)根據(jù)已知條件,結(jié)合函數(shù)圖像即可解答(5)在給定的范圍內(nèi)取值,帶入函數(shù)中求解即可得到答案.

解:(1yx2+2x3=(x+124

2)當(dāng)y0時(shí),有x2+2x30,

解得:x1=﹣3,x21,

∴函數(shù)yx2+2x3的圖象與x軸交點(diǎn)坐標(biāo)為(﹣30)和(1,0).

3)當(dāng)x=﹣3時(shí),y0;當(dāng)x=﹣2時(shí),y=﹣3;當(dāng)x=﹣1時(shí),y=﹣4;當(dāng)x0時(shí),y=﹣3;當(dāng)x1時(shí),y0

用五點(diǎn)法畫函數(shù)圖象.

4)結(jié)合函數(shù)圖象可知:當(dāng)x<﹣3 x1時(shí),y0

故答案為:x<﹣3x1

5)當(dāng)x=﹣1時(shí),y取最小值﹣4;

當(dāng)x=﹣3時(shí),y0;

當(dāng)x0時(shí),y=﹣3

∴當(dāng)﹣3x0時(shí),y的取值范圍為﹣4≤y0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+2x+c經(jīng)過點(diǎn)A(0,3),B(-1,0),請(qǐng)回答下列問題:

(1)求拋物線對(duì)應(yīng)的二次函數(shù)的表達(dá)式;

(2)拋物線的頂點(diǎn)為D,對(duì)稱軸與x軸交于點(diǎn)E,連接BD,BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點(diǎn),MEAMMEAD的延長線于點(diǎn)E

1)求證:△ABM ∽△EMA;

2)若AB2,BM1,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:PCD是等腰直角三角形,∠DPC=90°,∠APB=135°

求證:(1)△PAC∽△BPD;

(2)若AC=3,BD=1,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F.

(1)在圖1中證明CE=CF;

(2)若∠ABC=90°,GEF的中點(diǎn)(如圖2),直接寫出∠BDG的度數(shù);

(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=-x2+mx+nx軸交于點(diǎn)A,BAB的左側(cè)).

1)拋物線的對(duì)稱軸為直線x=-3AB=4.求拋物線的表達(dá)式;

2)平移(1)中的拋物線,使平移后的拋物線經(jīng)過點(diǎn)O,且與x正半軸交于點(diǎn)C,記平移后的拋物線頂點(diǎn)為P,若OCP是等腰直角三角形,求點(diǎn)P的坐標(biāo);

3)當(dāng)m=4時(shí),拋物線上有兩點(diǎn)Mx1,y1)和Nx2,y2),若x12,x22x1+x24,試判斷y1y2的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D是等邊三角形ABC的邊BC上一點(diǎn),以AD為邊作等邊ADE,連接CE.

1)求證:;

2)若∠BAD=20°,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),以原點(diǎn)O為圓心,1為半徑作圓,點(diǎn)P在直線上運(yùn)動(dòng),過點(diǎn)P作該圓的一條切線,切點(diǎn)為A,則PA的最小值為  

A. 3 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一種品牌羽絨服和防寒服,其中羽絨服的售價(jià)是防寒服售價(jià)的5倍還多100元,20141月份(春節(jié)前期)共銷售500件,羽絨服與防寒服銷量之比是41,銷售總收入為58.6萬元.

1)求羽絨服和防寒服的售價(jià);

2)春節(jié)后銷售進(jìn)入淡季,20142月份羽絨服銷量下滑了6m%,售價(jià)下滑了4m%,防寒服銷量和售價(jià)都維持不變,結(jié)果銷售總收入下降為16.04萬元,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案