【題目】某商場(chǎng)銷(xiāo)售一種品牌羽絨服和防寒服,其中羽絨服的售價(jià)是防寒服售價(jià)的5倍還多100元,2014年1月份(春節(jié)前期)共銷(xiāo)售500件,羽絨服與防寒服銷(xiāo)量之比是4:1,銷(xiāo)售總收入為58.6萬(wàn)元.
(1)求羽絨服和防寒服的售價(jià);
(2)春節(jié)后銷(xiāo)售進(jìn)入淡季,2014年2月份羽絨服銷(xiāo)量下滑了6m%,售價(jià)下滑了4m%,防寒服銷(xiāo)量和售價(jià)都維持不變,結(jié)果銷(xiāo)售總收入下降為16.04萬(wàn)元,求m的值.
【答案】(1)羽絨服和防寒服的售價(jià)為:1400元,260元;(2)m的值為10.
【解析】
(1)根據(jù)題意求出羽絨服與防寒服銷(xiāo)量,進(jìn)而表示出兩種服裝的價(jià)格,再找出等量關(guān)系求出即可;
(2)根據(jù)題意表示出羽絨服的銷(xiāo)量與價(jià)格,進(jìn)而結(jié)合銷(xiāo)售總收入下降為16.04萬(wàn)元得出等式求出即可.
解:(1)設(shè)防寒服的售價(jià)為x元,則羽絨服的售價(jià)為5x+100元,
∵2014年1月份(春節(jié)前期)共銷(xiāo)售500件,羽絨服與防寒服銷(xiāo)量之比是4:1,
∴羽絨服與防寒服銷(xiāo)量分別為:400件和100件,
根據(jù)題意得出:400(5x+100)+100x=58.6萬(wàn),
解得:x=260,
∴5x+100=1400(元),
答:羽絨服和防寒服的售價(jià)為:1400元,260元;
(2)∵2014年2月份羽絨服銷(xiāo)量下滑了6m%,售價(jià)下滑了4m%,防寒服銷(xiāo)量和售價(jià)都維
持不變,
結(jié)果銷(xiāo)售總收入下降為16.04萬(wàn)元,
∴400(1﹣6m%)×1400×(1﹣4m%)+100×260=160400
解得:m1=10,m2=(不合題意舍去),
答:m的值為10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,2)與(0,3)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=2.下列結(jié)論:abc<0;②9a+3b+c>0;③若點(diǎn)M(,y1),點(diǎn)N(,y2)是函數(shù)圖象上的兩點(diǎn),則y1<y2;④﹣<a<﹣.其中正確結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù).
(1)求證:無(wú)論m為任何實(shí)數(shù),此函數(shù)圖象與x軸總有兩個(gè)交點(diǎn);
(2)若此函數(shù)圖象與x軸的一個(gè)交點(diǎn)為(-3,0),求此函數(shù)圖象與x軸的另一個(gè)交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九(1)班和九(2)班各有5人參加了數(shù)學(xué)競(jìng)賽的初賽,成績(jī)?nèi)缦?/span>(單位:分):(1)班:80,45,89,40,98;(2)班:78,90,60,75,69.從能夠獲獎(jiǎng)的角度來(lái)看,你認(rèn)為應(yīng)派( )參加復(fù)賽.
A. (1)班 B. (2)班 C. 都可以 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)如圖,在平面直角坐標(biāo)系xOy中,拋物線()與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),經(jīng)過(guò)點(diǎn)A的直線l:與y軸負(fù)半軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)為D,且CD=4AC.
(1)直接寫(xiě)出點(diǎn)A的坐標(biāo),并求直線l的函數(shù)表達(dá)式(其中k,b用含a的式子表示);
(2)點(diǎn)E是直線l上方的拋物線上的動(dòng)點(diǎn),若△ACE的面積的最大值為,求a的值;
(3)設(shè)P是拋物線的對(duì)稱軸上的一點(diǎn),點(diǎn)Q在拋物線上,以點(diǎn)A,D,P,Q為頂點(diǎn)的四邊形能否成為矩形?若能,求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,圖形G上點(diǎn)P(x,y)的縱坐標(biāo)y與其橫坐標(biāo)x的差y﹣x稱為P點(diǎn)的“坐標(biāo)差”,而圖形G上所有點(diǎn)的“坐標(biāo)差”中的最大值稱為圖形G的“特征值”.
(1)①點(diǎn)A(1,3)的“坐標(biāo)差”為 ;
②拋物線y=﹣x2+3x+4的“特征值”為 ;
(2)某二次函數(shù)y=﹣x2+bx+c(c≠0)的“特征值”為﹣1,點(diǎn)B(m,0)與點(diǎn)C分別是此二次函數(shù)的圖象與x軸和y軸的交點(diǎn),且點(diǎn)B與點(diǎn)C的“坐標(biāo)差”相等.
①直接寫(xiě)出m= ;(用含c的式子表示)
②求此二次函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形 ABCD 中,點(diǎn) E,F 分別在 BC 和 AB 上,BE=3,AF=2,BF=4,將△ BEF 繞點(diǎn) E 順時(shí)針旋轉(zhuǎn),得到△GEH,當(dāng)點(diǎn) H 落在 CD 邊上時(shí),F,H 兩點(diǎn)之間的距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱軸l為x=﹣1.
(1)求拋物線的解析式并寫(xiě)出其頂點(diǎn)坐標(biāo);
(2)若動(dòng)點(diǎn)P在第二象限內(nèi)的拋物線上,動(dòng)點(diǎn)N在對(duì)稱軸l上.
①當(dāng)PA⊥NA,且PA=NA時(shí),求此時(shí)點(diǎn)P的坐標(biāo);
②當(dāng)四邊形PABC的面積最大時(shí),求四邊形PABC面積的最大值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是的中點(diǎn),弦CE⊥AB于點(diǎn)F,過(guò)點(diǎn)D的切線交EC的延長(zhǎng)線于點(diǎn)G,連接AD,分別交CF、BC于點(diǎn)P、Q,連接AC.給出下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點(diǎn)P是△ACQ的外心;④APAD=CQCB.其中正確的是_____(寫(xiě)出所有正確結(jié)論的序號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com