【題目】如圖,梯形ABCD中,AB∥CD∠ABC=90°AB=8,CD=6,BC=4,AB邊上有一動點P(不與AB重合),連結(jié)DP,作PQ⊥DP,使得PQ交射線BC于點E,設AP=x

x為何值時,△APD是等腰三角形?

若設BE=y,求y關于x的函數(shù)關系式;

BC的長可以變化,在現(xiàn)在的條件下,是否存在點P,使得PQ經(jīng)過點C?若存在,求出相應的AP的長;若不存在,請說明理由,并直接寫出當BC的長在什么范圍內(nèi)時,可以存在這樣的點P,使得PQ經(jīng)過點C

【答案】

【解析】

解:過D點作DHABH

則四邊形DHBC為矩形,

DH=BC=4,HB=CD=6 ∴AH=2AD=2…………………1

AP=x, PH=x2,

情況:當AP=AD時,即x=2……………………………2

情況:當AD=PD時,則AH=PH

∴2=x2,解得x= 4………………………………………………………·3

情況:當AP=PD時,

RtDPH中,x2=42+(x2)2,解得x=5…………………………………4

∵2<x<8x2、45時,APD是等腰三角形…………………………5

易證:DPH∽△PEB ………………………………………………………………7

,整理得:y=(x2)(8x)=x2+x4………8

若存在,則此時BE=BC=4,即y=x2+x4=4,整理得:x210x+32=0

∵△=(10)24×32<0,原方程無解,……………………………………………9

不存在點P,使得PQ經(jīng)過點C……………………………………………………10

BC滿足0BC≤3時,存在點P,使得PQ經(jīng)過點C……………………………12

1、過D點作DH⊥ABH,則四邊形DHBC為矩形,在Rt△AHD中,由勾股定理可求得DH、ADPH的值,若△ADP為等腰三角形,則分三種情況:AP=AD時,x=AP=AD,AD=PD時,有AH=PH,故x=AH+PH,AP=PD時,則在Rt△DPH中,由勾股定理可求得DP的值,有x=AP=DP

2、易證:△DPH∽△PEB,即,故可求得yx的關系式.

3、利用△DPH∽△PEB,得出,進而利用根的判別式和一元二次不等式解集得出即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中裝有三個完全相同的小球,分別標有數(shù)字3、4、5.從袋子中隨機取出一個小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個小球,用小球上的數(shù)字作為個位上的數(shù)字,這樣組成一個兩位數(shù),試問:按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫樹狀圖法加以說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學習蘇科版九下《銳角三角函數(shù)》一章時,小明同學對一個角的倍角的三角函數(shù)值是否具有關系產(chǎn)生了濃厚的興趣,進行了一些研究.

(1)初步嘗試:我們知道:tan60°=   ,tan30°=   ,發(fā)現(xiàn)結(jié)論:tanA   2tanA(填“=”或“≠”);

(2)實踐探究:如圖1,在Rt△ABC中,∠C=90°,AC=2,BC=1,求tanA的值;小明想構(gòu)造包含A的直角三角形:延長CAD,使得DAAB,連接BD,所以得到∠DA,即轉(zhuǎn)化為求∠D的正切值.

請按小明的思路進行余下的求解:

(3)拓展延伸:如圖2,在Rt△ABC中,∠C=90°,AC=3,tanA

①tan2A   

tan3A的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,動點P從A點出發(fā),以每秒1個單位長度的速度沿AB向B點運動,同時動點Q從B點出發(fā),以每秒2個單位長度的速度沿BC→CD方向運動,當P運動到B點時,P、Q兩點同時停止運動.設P點運動的時間為t,APQ的面積為S,則S與t的函數(shù)關系的圖象是【 】

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2﹣(2a+1)x+ca>0)的圖象經(jīng)過坐標原點O,一次函數(shù)y=﹣x+4x軸、y軸分別交于點AB

(1)c   ,點A的坐標為   ;

(2)若二次函數(shù)yax2﹣(2a+1)x+c的圖象經(jīng)過點A,求a的值;

(3)若二次函數(shù)yax2﹣(2a+1)x+c的圖象與AOB只有一個公共點,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】反比例函數(shù)在第一象限的圖象如圖所示,過點A(1,0)作x軸的垂線,交反比例函數(shù)的圖象于點M,AOM的面積為3.

(1)求反比例函數(shù)的解析式;

(2)設點B的坐標為(t,0),其中t>1.若以AB為一邊的正方形有一個頂點在反比例函數(shù)的圖象上,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,點D、Ex軸上,CFy軸于點B(0,2),且矩形其面積為8,此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD兩條對角線BDAC的長之比為3:4,周長為40cm,求菱形的高及面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD,DE交BC于F,交AB的延長線于E,且EDB=C.

(1)求證:ADEDBE

(2)若DE=9cm,AE=12cm,求DC的長.

查看答案和解析>>

同步練習冊答案