【題目】如圖,在邊長為4的正方形ABCD中,動點P從A點出發(fā),以每秒1個單位長度的速度沿AB向B點運動,同時動點Q從B點出發(fā),以每秒2個單位長度的速度沿BC→CD方向運動,當P運動到B點時,P、Q兩點同時停止運動.設P點運動的時間為t,APQ的面積為S,則S與t的函數(shù)關系的圖象是【 】

【答案】D。

解析動點Q從B點出發(fā),以每秒2個單位長度的速度沿BC→CD方向運動,

點Q運動到點C的時間為4÷2=2秒。

由題意得,當0≤t≤2時,即點P在AB上,點Q在BC上,AP=t,BQ=2t,

,為開口向上的拋物線的一部分。

當2<t≤4時,即點P在AB上,點Q在DC上,AP=t,AP上的高為4,

,為直線(一次函數(shù))的一部分。

觀察所給圖象,符合條件的為選項D。故選D。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校九(1)、九(2)兩班的班長交流了為四川安雅地震災區(qū)捐款的情況:

)九(1)班班長說:我們班捐款總數(shù)為1200元,我們班人數(shù)比你們班多8人.

)九(2)班班長說:我們班捐款總數(shù)也為1200元,我們班人均捐款比你們班人均捐款多20%

請根據(jù)兩個班長的對話,求這兩個班級每班的人均捐款數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在平面直角坐標系中,ABC各頂點的坐標分別為:A4,0),B﹣1,4),C﹣31

1)在圖中作A′B′C′使A′B′C′ABC關于x軸對稱;

2)寫出點A′B′C′的坐標;

3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠B=45°,AB=AC,點DBC中點,直角∠MDN繞點D旋轉,DM、DN分別與邊AB、AC交于E、F兩點,下列結論:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;BECF=EF,其中正確結論是(

A. ①②④ B. ②③④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點P的坐標為(0,2),直線y=與x軸、y軸分別交于點A,B,點M是直線AB上的一個動點,則PM長的最小值為( )

A.3 B.4 C.5 D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,已知ABCDADAB,AD=2,AB+CD=4,點EBC的中點.

1)求四邊形ABCD的面積;

2)若AEBC,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,ABC=70°,以B為圓心,任意長為半徑畫弧交AB,BC于點E,F(xiàn),再分別以點E,F(xiàn)為圓心、以大于EF長為半徑畫弧,兩弧交于點P,作射線BPAC于點D,則∠BDC為( 。┒龋

A. 65 B. 75 C. 80 D. 85

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2bx3經過點A,B,C,已知A(-10),B3,0).

1)求拋物線的解析式;

2)如圖1P為線段BC上一點,過點Py軸的平行線,交拋物線于點D,當BDC的面積最大時,求點P的坐標;

3)如圖2,在(2)的條件下,延長DPx軸于點F,Mm,0)是x軸上一動點,N 是線段DF上一點,當BDC的面積最大時,若∠MNC90°,請直接寫出實數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=﹣x2+bx+cx軸交于A、B兩點,與y軸交于點C,頂點為D,過點A的直線與拋物線交于點E,與y軸交于點F,且點B的坐標為(3,0),點E的坐標為(2,3).

(1)求拋物線的解析式;

(2)若點G為拋物線對稱軸上的一個動點,Hx軸上一點,當以點C、G、H、F四點所圍成的四邊形的周長最小時,求出這個最小值及點G、H的坐標;

(3)設直線AE與拋物線對稱軸的交點為P,M為直線AE上的任意一點,過點MMNPD交拋物線于點N,以P、D、M、N為頂點的四邊形能否為平行四邊形?若能,請求點M的坐標;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案