【題目】如圖甲,拋物線y=ax2+bx﹣1經(jīng)過(guò)A(﹣1,0),B(2,0)兩點(diǎn),交y軸于點(diǎn)C.
(1)求拋物線的表達(dá)式和直線BC的表達(dá)式.
(2)如圖乙,點(diǎn)P為在第四象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線PE交直線BC于點(diǎn)D.
①在點(diǎn)P運(yùn)動(dòng)過(guò)程中,四邊形ACPB的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,說(shuō)明理由.
②是否存在點(diǎn)P使得以點(diǎn)O,C,D為頂點(diǎn)的三角形是等腰三角形?若存在,求出滿足條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
【答案】(1)y=x2﹣x﹣1;y=x﹣1;(2)①當(dāng)x=1時(shí),S最大值為2;②點(diǎn)P坐標(biāo)為(,)或(1,﹣1)或(,﹣).
【解析】
(1)設(shè):二次函數(shù)的表達(dá)式為:y=a(x+1)(x﹣2)=ax2﹣ax﹣2a,即:﹣2a=﹣1,解得:a=,即可求解;
(2)①S四邊形ACPB=S△ABC+S△BCP=×AB×OC+×PD×OB,即可求解;②分CD=OC、CD=OD、OC=OD三種情況分別求解即可.
解:(1)二次函數(shù)的表達(dá)式為:y=a(x+1)(x﹣2)=ax2﹣ax﹣2a,
即:﹣2a=﹣1,解得:a=,
故拋物線的表達(dá)式為:y=x2﹣x﹣1,點(diǎn)C(0,﹣1),
則直線BC的表達(dá)式為:y=kx﹣1,
將點(diǎn)B的坐標(biāo)代入上式得:0=2k﹣1,解得:k=,
故直線BC的表達(dá)式為:y=x﹣1;
(2)①設(shè)點(diǎn)P(x, x2﹣x﹣1),則點(diǎn)D(x, x﹣1),
S四邊形ACPB=S△ABC+S△BCP=×AB×OC+×PD×OB
=×3×1+×2(x﹣1﹣x2+x+1)=﹣x2+x+,
∵﹣<0,
故S有最大值,當(dāng)x=1時(shí),S最大值為2;
②設(shè)點(diǎn)D坐標(biāo)為(m, m﹣1),
則CD2=m2+m2,OC2=1,DO2=m2+(m﹣1)2=m2﹣m+1,
當(dāng)CD=OC時(shí),m2+m2=1,解得:m=,
同理可得:
當(dāng)CD=OD時(shí),m=1,
當(dāng)OC=OD時(shí),m=,
則點(diǎn)P坐標(biāo)為(,)或(1,﹣1)或(,﹣).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)進(jìn)行數(shù)值轉(zhuǎn)換的運(yùn)行程序如圖所示,從“輸入實(shí)數(shù)x”到“結(jié)果是否大于0”稱為“一次操作”(1)判斷:(正確的打“√”,錯(cuò)誤的打“×”)
①當(dāng)輸入x=3后,程序操作僅進(jìn)行一次就停止.
②當(dāng)輸入x為負(fù)數(shù)時(shí),無(wú)論x取何負(fù)數(shù),輸出的結(jié)果總比輸入數(shù)大.
(2)探究:是否存在正整數(shù)x,使程序能進(jìn)行兩次操作,并且輸出結(jié)果小于12?若存在,請(qǐng)求出所有符合條件的x的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點(diǎn),E是AD的中點(diǎn).過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于點(diǎn)F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種蔬菜每千克售價(jià)(元)與銷售月份之間的關(guān)系如圖1所示,每千克成本(元)與銷售月份之間的關(guān)系如圖2所示,其中圖1中的點(diǎn)在同一條線段上,圖2中的點(diǎn)在同一條拋物線上,且拋物線的最低點(diǎn)的坐標(biāo)為(6,1).
(1)求出與之間滿足的函數(shù)表達(dá)式,并直接寫出的取值范圍;
(2)求出與之間滿足的函數(shù)表達(dá)式;
(3)設(shè)這種蔬菜每千克收益為元,試問(wèn)在哪個(gè)月份出售這種蔬菜,將取得最大值?并求出此最大值.(收益=售價(jià)-成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC=2,取BC邊中點(diǎn)E,作ED∥AB,EF∥AC,得到四邊形EDAF,它的面積記作S1;取BE中點(diǎn)E1,作E1D1∥FB,E1F1∥EF,得到四邊形E1D1FF1,它的面積記作S2.照此規(guī)律作下去,則S2017=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形ABCD中,E為對(duì)角線BD邊上一點(diǎn).
當(dāng)時(shí),把線段CE繞C點(diǎn)順時(shí)針旋轉(zhuǎn)得CF,連接DF.
求證:;
連FE成直線交CD于點(diǎn)M,交AB于點(diǎn)N,求證:;
當(dāng),E為BD中點(diǎn)時(shí),如圖2,P為BC下方一點(diǎn),,,,求PC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=2∠C,依據(jù)尺規(guī)作圖的痕跡,解答下面的問(wèn)題:
(1)求證:△ABE≌△AFE;
(2)若AB=3.3,BE=1.8,求AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com