【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;

(2)如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,
①已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,當(dāng)A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.
②若點P、Q的運動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點為頂點的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.

【答案】
(1)解:①∵四邊形ABCD是矩形,

∴AD∥BC,

∴∠CAD=∠ACB,∠AEF=∠CFE,

∵EF垂直平分AC,垂足為O,

∴OA=OC,

∴△AOE≌△COF,

∴OE=OF,

∴四邊形AFCE為平行四邊形,

又∵EF⊥AC,

∴四邊形AFCE為菱形,

②設(shè)菱形的邊長AF=CF=xcm,則BF=(8﹣x)cm,

在Rt△ABF中,AB=4cm,

由勾股定理得42+(8﹣x)2=x2,

解得x=5,

∴AF=5cm


(2)解:①顯然當(dāng)P點在AF上時,Q點在CD上,此時A、C、P、Q四點不可能構(gòu)成平行四邊形;

同理P點在AB上時,Q點在DE或CE上或P在BF,Q在CD時不構(gòu)成平行四邊形,也不能構(gòu)成平行四邊形.

因此只有當(dāng)P點在BF上、Q點在ED上時,才能構(gòu)成平行四邊形,

∴以A、C、P、Q四點為頂點的四邊形是平行四邊形時,PC=QA,

∵點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,

∴PC=5t,QA=CD+AD﹣4t=12﹣4t,即QA=12﹣4t,

∴5t=12﹣4t,

解得 ,

∴以A、C、P、Q四點為頂點的四邊形是平行四邊形時, 秒.

②由題意得,四邊形APCQ是平行四邊形時,點P、Q在互相平行的對應(yīng)邊上.

分三種情況:

i)如圖1,當(dāng)P點在AF上、Q點在CE上時,AP=CQ,即a=12﹣b,得a+b=12;

ii)如圖2,當(dāng)P點在BF上、Q點在DE上時,AQ=CP,即12﹣b=a,得a+b=12;

iii)如圖3,當(dāng)P點在AB上、Q點在CD上時,AP=CQ,即12﹣a=b,得a+b=12.

綜上所述,a與b滿足的數(shù)量關(guān)系式是a+b=12(ab≠0)


【解析】(1)先證明四邊形AFCE為平行四邊形,再根據(jù)對角線互相垂直平分的平行四邊形是菱形作出判定;根據(jù)勾股定理即可求得AF的長;(2)①分情況討論可知,當(dāng)P點在BF上、Q點在ED上時,才能構(gòu)成平行四邊形,根據(jù)平行四邊形的性質(zhì)列出方程求解即可;②分三種情況討論可知a與b滿足的數(shù)量關(guān)系式.
【考點精析】認(rèn)真審題,首先需要了解線段垂直平分線的性質(zhì)(垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等),還要掌握勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,雙曲線y= (x>0)與直線EF交于點A,點B,且AE=AB=BF,連結(jié)AO,BO,它們分別與雙曲線y= (x>0)交于點C,點D,則:

(1)①AB與CD的位置關(guān)系是;
②四邊形ABDC的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:
(1) =
(2)x2﹣7x+10=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD是菱形,且∠ABC=60,△ABE是等邊三角形,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM,則下列五個結(jié)論中正確的是(
①若菱形ABCD的邊長為1,則AM+CM的最小值1;
②△AMB≌△ENB;
③S四邊形AMBE=S四邊形ADCM
④連接AN,則AN⊥BE;
⑤當(dāng)AM+BM+CM的最小值為2 時,菱形ABCD的邊長為2.

A.①②③
B.②④⑤
C.①②⑤
D.②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,菱形ABCD中,點E、F分別為AB、AD的中點,連接CE、CF.

(1)求證:CE=CF;
(2)如圖2,若H為AB上一點,連接CH,使∠CHB=2∠ECB,求證:CH=AH+AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD置于平面直角坐標(biāo)系中,其中AD邊在x軸上,AB=2,直線MN:y=x﹣4沿x軸的負(fù)方向以每秒1個單位的長度平移,設(shè)在平移過程中該直線被矩形ABCD的邊截得的線段長度為m,平移時間為t,m與t的函數(shù)圖象如圖2所示.

(1)點A的坐標(biāo)為 , 矩形ABCD的面積為;
(2)求a,b的值;
(3)在平移過程中,求直線MN掃過矩形ABCD的面積S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠計劃生產(chǎn)A,B兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤如下表:

A種產(chǎn)品

B種產(chǎn)品

成本(萬元∕件)

3

5

利潤(萬元∕件)

1

2


(1)若工廠計劃獲利14萬元,問A,B兩種產(chǎn)品應(yīng)分別生產(chǎn)多少件?
(2)若工廠投入資金不多于44萬元,且獲利多于14萬元,問工廠有哪幾種生產(chǎn)方案?
(3)在(2)條件下,哪種方案獲利最大?并求最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫圖題:
(1)如圖,將△ABC繞點O順時針旋轉(zhuǎn)180°后得到△A1B1C1 . 請你畫出旋轉(zhuǎn)后的△A1B1C1;

(2)請你畫出下面“蒙古包”的左視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強與小剛都住在安康小區(qū),在同一所學(xué)校讀書,某天早上,小強7:30從安康小區(qū)站乘坐校車去學(xué)校,途中需?績蓚站點才能到達學(xué)校站點,且每個站點停留2分鐘,校車行駛途中始終保持勻速,當(dāng)天早上,小剛7:39從安康小區(qū)站乘坐出租車沿相同路線出發(fā),出租車勻速行駛,比小強乘坐的校車早1分鐘到學(xué)校站點,他們乘坐的車輛從安康小區(qū)站出發(fā)所行使路程y(千米)與行駛時間x(分鐘)之間的函數(shù)圖象如圖所示.
(1)求點A的縱坐標(biāo)m的值;
(2)小剛乘坐出租車出發(fā)后經(jīng)過多少分鐘追到小強所乘坐的校車?并求此時他們距學(xué)校站點的路程.

查看答案和解析>>

同步練習(xí)冊答案