【題目】如圖,在平面直角坐標系中,已知拋物線過,,三點,點的坐標是,點的坐標是,動點在拋物線上.
________,________,點的坐標為________;(直接填寫結果)
是否存在點,使得是以為直角邊的直角三角形?若存在,求出所有符合條件的點的坐標;若不存在,說明理由;
過動點作垂直軸于點,交直線于點,過點作軸的垂線.垂足為,連接,當線段的長度最短時,求出點的坐標.
【答案】(1)-2,-3,(-1,0)(2)存在的坐標是或(3)或
【解析】
(1)將點A和點C的坐標代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標;
(2)分別過點C和點A作AC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點坐標即可;
(3)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據垂線段最短可求得點D的縱坐標,從而得到點P的縱坐標,然后由拋物線的解析式可求得點P的坐標.
(1)∵將點A和點C的坐標代入拋物線的解析式得:,解得:b=﹣2,c=﹣3,∴拋物線的解析式為y=x2﹣2x﹣3.
∵令x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴點B的坐標為(﹣1,0).
故答案為:﹣2;﹣3;(﹣1,0).
(2)存在.理由如下:
如圖所示:
①當∠ACP1=90°.
由(1)可知點A的坐標為(3,0).
設AC的解析式為y=kx﹣3.
∵將點A的坐標代入得:3k﹣3=0,解得:k=1,∴直線AC的解析式為y=x﹣3,∴直線CP1的解析式為y=﹣x﹣3.
∵將y=﹣x﹣3與y=x2﹣2x﹣3聯(lián)立解得:,(舍去),∴點P1的坐標為(1,﹣4).
②當∠P2AC=90°時.
設AP2的解析式為y=﹣x+b.
∵將x=3,y=0代入得:﹣3+b=0,解得:b=3,∴直線AP2的解析式為y=﹣x+3.
∵將y=﹣x+3與y=x2﹣2x﹣3聯(lián)立解得:,(舍去),∴點P2的坐標為(﹣2,5).2
綜上所述:P的坐標是(1,﹣4)或(﹣2,5).
(3)如圖2所示:連接OD.
由題意可知,四邊形OFDE是矩形,則OD=EF.
根據垂線段最短,可得當OD⊥AC時,OD最短,即EF最短.
由(1)可知.在Rt△AOC中,∵OC=OA=3,OD⊥AC,∴D是AC的中點.
又∵DF∥OC,∴,∴點P的縱坐標是,解得:,∴當EF最短時,點P的坐標是:()或().
科目:初中數學 來源: 題型:
【題目】4張相同的卡片上分別寫有數字2,3,4,5將卡片的背面向上,洗勻后從中任意抽取1 張,將卡片上的數字作為被減數;一只不透明的袋子中裝有標號2,3,4的3個小球,這些球除標號外都相同,攪勻后從中任意摸出一個球,將摸到的球的標號作為減數.
(1)用樹狀圖或列表的方法求這兩個數的差為0的概率;
(2)如果游戲規(guī)則規(guī)定:當抽到的這兩個數的差為非負數時,則甲獲勝;否則,乙獲勝,你認為這樣的規(guī)則公平嗎?如果不公平,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點為斜邊上的一點,以為半徑的與邊交于點,與邊交于點,連接,且平分.
試判斷與的位置關系,并說明理由;
若,,求陰影部分的面積(結果保留).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】形如:的函數叫二次函數,它的圖象是一條拋物線.類比一元一次方程的解可以看成兩條直線的交點的橫坐標;則一元二次方程的解可以看成拋物線與直線(軸)的交點的橫坐標;也可以看成是拋物線與直線________的交點的橫坐標;也可以看成是拋物線________與直線的交點的橫坐標;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有甲、乙兩個箱子,其中甲箱內有顆球,分別標記號碼,且號碼為不重復的整數,乙箱內沒有球.已知小育從甲箱內拿出顆球放入乙箱后,乙箱內球的號碼的中位數為.若此時甲箱內有顆球的號碼小于,有顆球的號碼大于,若他們的中位數都為,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC.
(1)(特殊情況,探索結論)
如圖1,當點E為AB的中點時,確定線段AE與DB的大小關系,請你直接寫出結論:
AE DB(填“>”、“<”或“=”).
(2)(特例啟發(fā),解答題目)
如圖2,當點E為AB邊上任意一點時,確定線段AE與DB的大小關系,請你直接寫出結論,AE DB(填“>”、“<”或“=”);理由如下,過點E作EF∥BC,交AC于點F.(請你將解答過程完整寫下來).
(3)(拓展結論,設計新題)
在等邊三角形ABC中,點E在直線AB上,點D在線段CB的延長線上,且ED=EC,若△ABC的邊長為1,AE=2,求CD的長.(請你畫出相應圖形,并直接寫出結果).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com